微积分基本定理描述了微积分的两个主要运算──微分和积分之间的关系。
定理的第一部分,称为微积分第一基本定理,表明不定积分是微分的逆运算。这一部分定理的重要之处在于它保证了某连续函数的原函数的存在性。
定理的第二部分,称为微积分第二基本定理,表明定积分可以用无穷多个原函数的任意一个来计算。这一部分有很多实际应用,这是因为它大大简化了定积分的计算。
该定理的一个特殊形式,首先由詹姆斯·格里高利(1638-1675)证明和出版。定理的一般形式,则由艾萨克·巴罗完成证明。
微积分基本定理表明,一个变量在一段时间之内的无穷小变化之和,等于该变量的净变化。
我们从一个例子开始。假设有一个物体在直线上运动,其位置为x(t),其中t为时间,x(t)意味着x是t的函数。这个函数的导数等于位置的无穷小变化dx除以时间的无穷小变化dt(当然,该导数本身也与时间有关)。我们把速度定义为位置的变化除以时间的变化。用莱布尼兹记法:
...