词条 欧几里得几何

欧几里得几何

欧几里得几何指按照欧几里得的《几何原本》构造的几何学。

欧几里得几何有时就指二维平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。高维的情形请参看欧几里得空间。

数学上,欧几里得几何是指二维平面和三维空间中的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

其中公设五又称之为平行公设(Parallel Axiom),叙述比较复杂,这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss, 1777年—1855年)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。

欧几里得几何相关文献
康熙的科学精神:亲自校改欧几里得《几何原本》
康熙的科学精神:亲自校改欧几里得《几何原本》,康熙在少年时期就接触了一些像南怀仁这样的西方耶稣会士,他亲政之前,鳌拜一直力
查看全文
康熙的科学精神:曾亲自校改欧几里得《几何原本》
康熙的科学精神:曾亲自校改欧几里得《几何原本》,康熙在少年时期就接触了一些像南怀仁这样的西方耶稣会士,他亲政之前,鳌拜一直力
查看全文
康熙曾亲自校改欧几里得《几何原本》
康熙曾亲自校改欧几里得《几何原本》,康熙在少年时期就接触了一些像南怀仁这样的西方耶稣会士,他亲政之前,鳌拜一直力
查看全文
欧几里得几何
公理描述欧几里得证明的要素,由于一个正三角形的存在必须包含每个线段,包含ΑΒΓ等边三角形的构成,是由Α和Β两点,画出圆Δ与圆Ε,并且交叉于第三点Γ上。欧几里得几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。欧几里得平面几何的五条公理(公设)是:从一点向另一点可以引一条直线。任意线段能无限延伸成一条直线。给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。所有直角都相等。若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。第五条公理称为平行公理(平行公设),可以导出下述命题:平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不能被证明的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何)。从另一方面讲,欧几里得几何...
查看全文
非欧几里得几何
几何原本第五公设古希腊数学家欧几里得的《几何原本》提出了五条公设。头四条公设分别为:由任意一点到任意一点可作直线。一条有限直线可以继续延长。以任意点为心及任意的距离可以画圆。凡直角都相等。同一平面内一条直线a和另外两条直线b.c相交,若在a某一侧的两个内角的和小于两直角,则b.c两直线经无限延长后在该侧相交。长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对...
查看全文