族谱网 头条 人物百科

水力发电

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:449
转发:0
评论:0
发电流程惯常水力发电的流程为:河川的水经由拦水设施攫取后,经过压力隧道、压力钢管等水路设施送至电厂,当机组须运转发电时,打开主阀(类似家中水龙头之功能),后开启导翼(实际控制输出力量的小水门)使水冲击水轮机,水轮机转动后带动发电机旋转,发电机加入励磁后,发电机建立电压,并于断路器投入后开始将电力送至电力系统。如果要调整发电机组的出力,可以调整导翼的开度增减水量来达成,发电后的水经由尾水路回到河道,供给下游的用水使用。水力发电的种类惯常式水力发电水库式水力发电水库式水力发电(英语:Conventionalhydroelectricity),又称堤坝式水力发电。是以堤坝储水形成水库,其最大输出功率由水库容积及出水位置与水面高度差距决定。此高度差称为扬程又叫落差或水头,而水的势能与扬程成正比。川流式水力发电川流式水力发电(英语:Runoftheriverhydroelectricity),又称引...

发电流程

惯常水力发电的流程为:河川的水经由拦水设施攫取后,经过压力隧道、压力钢管等水路设施送至电厂,当机组须运转发电时,打开主阀(类似家中水龙头之功能),后开启导翼(实际控制输出力量的小水门)使水冲击水轮机,水轮机转动后带动发电机旋转,发电机加入励磁后,发电机建立电压,并于断路器投入后开始将电力送至电力系统。如果要调整发电机组的出力,可以调整导翼的开度增减水量来达成,发电后的水经由尾水路回到河道,供给下游的用水使用。

水力发电的种类

惯常式水力发电

水库式水力发电

水库式水力发电(英语:Conventional hydroelectricity),又称堤坝式水力发电。是以堤坝储水形成水库,其最大输出功率由水库容积及出水位置与水面高度差距决定。此高度差称为扬程又叫落差或水头,而水的势能与扬程成正比。

川流式水力发电

川流式水力发电(英语:Run of the river hydroelectricity),又称引水式水力发电或径流式水力发电。川流式水力发电站的堤坝相当小,有的甚至没有堤坝。流经的水若不用作发电就会即时流走。在美国,这种方式的电站产能相当该国耗电量的13.7%(2011年计)。

调整池式水力发电

调整池式水力发电是界于水库式水力发电及川流式水力发电之间的发电方式,和水库式水力发电一様会兴建拦水坝,形成的湖泊称为调整池,但调整池只容纳一天的水量,因此规模比一般水库要小。

潮汐发电

潮汐发电是以因潮汐引致的海洋水位升降发电。一般都会建水库储内发电,但也有直接利用潮汐产生的水流发电。全球适合潮汐发电的地方并不多,英国有八处地适合,估计其潜能促以满足该国20%的电力需求。

抽水蓄能式水力发电

抽水蓄能式水力发电(英语:Pumped-storage hydroelectricity),是一种储能方式,但并不是能量来源。 当电力需求低时,多出的电力产能继续发电,推动电泵将水泵至高位储存,到电力需求高时,便以高位的水作发电之用。此法可以改善发电机组的使用率,在商业上非常重要。

优点及缺点

有利方面

发电时无污染物排放

与其他可再生能源一样,水力发电在运作时机乎全无污染物排放。(但并不是无碳排放)

营运成本低及稳定

水力发电无需燃料,发电成本不会受燃料价格影响,加上运作高度自动化,运作时所需人手少,故营运成本低。以三峡水电站为例,若连续以最大发电量发电计,出售5至8年电力就可以收回建造成本。

可按需供电

水力发电可以按用电量需要而快速调整发电量。水力发电启动时间仅为数分钟,只需60至90秒就能达至全功率输出,烧气发电所需时间更短。因此,小型水力发电站可以用作调节供电量的缓冲。

发电以外的其他用途

水库有储水功能,可以控制水流量,有一定程度的上下游水量分布调节能力, 故可以降低洪水泛滥造成的损失及蓄备灌溉用水。在某些地理环境下,水库能降低河水流速,改善航运。

不利方面

寿命有限

大部分其他发电方式只要更换新装置就可以延长发电寿命,但水力发电由于水库内淤泥堆积,寿命有限,由50至200年不等 ,一般约为100年。 淤泥堆积的速率视乎水库大小与沉积物多少。在美国,大型水库平均每年减少0.2%的容量,而中国的主要水库平均每年减少2.3%的容量。

投资巨大

溃堤会导至大量人命伤亡及经济损失,因此水坝品质必需极高,令大型水坝承受巨大水压,地质堪察、设计、计划、测试及建造等成本相当高。

破坏生态环境

大型水库会导致上游大面积土地被水淹没,导致栖息地细碎化, 破坏生物多样性, 失去生产力较高的低地、草原,破坏生态价值高的湿地、河谷及森林。

而下游同样会受影响,原本会流至下游的沉积物在有水力发电站后会大幅减少,这是因为发电机组所排出的水中含有的沉淀物非常少,使下游河床被冲刷,又先去沉淀物的补充,导至水土流失,最终下游的原有地貌会逐渐被侵蚀,河堤,三角州会受影响,肥沃的冲积土减少。

阻碍水中生物迁徙,阻碍其繁殖,部分物种可能因而绝种,减少了物种多样性。水库会使水温上升,因而导致鱼群数量及种类减少。而且这些破坏是永久性、不能逆转的。

能源依赖水流

水力发电虽然不需燃料,但需要水源,当一个地区重度依赖水力发电供电后,若发生天旱而水流减小时,该地区就会发生供电不足的情况。若发电与生活用水都依赖同一水源,情况就更严重。

全球气候变化也导至发生水流短缺可能性增加,有研究指出,每当全球气温上升2度,就会减少10%降雨量,有可能导至河流水量下跌40%,巴西的水力发电量也预计在本世纪末会因此而减少7%。

人口迁移

上游居住在将被淹盖的土地上的人口需被迁移,2000年,全球因此而被迁移的人口有4千至8千万。

位置受限

并不是任何地点都适合建水库,除需在适合的水源及地形外,还需考虑一系列因素,包括地质结构、对自然环境影响、对当地居民影响等。

水坝的其他影响

减少灌溉用水 — 可作大型水库增大水面表面面积,增加了水的蒸发量,也就减小了河水的总量,实质性地减小了可用作灌溉用水。

诱发地震 — 储水量大及深的水库会产生巨大压力,这压力会改变原有的地壳受力情况而导致地震 ,历史上第一次水库诱发地震在阿尔及利亚于1932年发生, 时至今日,有证据证明有最小70次地震与水库有关。 1963年,意大利的一次水库诱发的地震中有2600人死亡。

主条目:水库溃堤

水力发电

  溃坝后的板桥水库

水坝形成的水库储有大量水,若一旦因为天灾(例如地震或特大洪水)、工程质量、设计或人为因素(例如战争)而溃堤可导致严重人命伤亡及经济损失,例如1975年的中国的河南“75·8”溃坝事件,包括板桥水库在内的60多座水库接连溃堤,受灾人数1015万人,死亡人数2.6至23万, 比切尔诺贝利核事故的死亡人数(包括事后因而生癌而死亡的人数)多超过8至60倍。

在战争中,大坝也经常成为战略目标, 水电站是发电设施,有战略价值外, 在韩战及越战也有过故意破坏水坝引发洪水的例子。

水力发电与其他发电方式的比较

2014年全球电力来源            错误: 在第7行结尾中找不到一个正式的链接2014年全球总发电量: 23,903,353GWh 资料来源:IEA

发电成本

水力发电每度电的发电成本显然较目前部分广泛应用的发电方例如火电、核电、太阳能低,但预计将比风力发电相当。 。

供电稳定性

相对太阳能及风能等可再生能源,水力发电量相对稳定,但并不及火力发电及核能发电,原因是水源、流量等会随季节、气候改变。

灵活性

在电力工业角度来说,水电是调节性最好的电源之一。由于只需一开闸门就立刻可以发电,水电通常在输电网络中可以扮演承担调峰、调频、事故备用等角色。在调节性能这一点上,能够与水电媲美的只有石油及天然气发电。、

对环境影响

水库对环境有相当及不可逆转的影响及破坏,相比其他可再生能源,例如太阳能、风力发电等,较不环保。而且水库式水电站寿命有限,可持续发展方面也不及其他可再生能源,但一般情况下仍然比石化燃料发电环保。

排放温室气体

由于水坝有相当深度,造成校多缺氧环境,例如坝底,做就生物的厌氧分解,动植物分解后形成甲烷,也有少量二氧化碳,是一种比二氧化碳强36倍的温室气体,加剧全球暖化。这是自然界中,湖泊、湿地等环境不会发生的,因为自然界的这些地方有较好的氧循环,使水的含氧量较高,让生物能把甲烷分解成温室效应低很多的二氧化碳。

不同环境下水力发电的温室气体排放量分别可以很大。在温带,如加拿大及北欧,温室气体的排放只有一般水力发的2-8%,但在热带地区,水力发电所产生的温室气体会比使用石化燃料的火力发电还多,极端情况下可达石化燃料的火力发电多3.5倍。 。而季节性的水位变化会为水库不断提供分解物,使水库内的生物的厌氧分解持续不断。

一份被英国牛津大学刊物“BioScience”刊登,由一国际科学家团队发表的研究报告指出水库等人工储水设施会产生大量温室气体,该报告分析了超过200排放研究个案,包括了267个堤坝及水库,覆盖77,699km 。得出结果推算出全球水坝、水库每年产生10亿吨温室气体,占全球碳排放量1.3%。而值得注意的是,当中的79%是温室效应较二氧化碳强36倍的甲烷!

此外,由于水坝工程浩大,兴建水坝所产生的温室气体是火力发电的数百倍。

全球使用水电的情况

全球水力发电装置量

全球水力发电总量每年都不停在增长中,但在全球可再生能源所占比重就不断下降,近年由于中国、俄国、巴西等发展水力发电,所以比重的减少有所放慢。

各国使用情况

据2004年统计,世界上大约有五分之一(20%)的电力供应是来自水力发电,至2011年则下降至16%。

现在全球有150个国家使用水力发电,有24个国家的水电比重超过90%,至少有三分之一的国家的电力供应以水电为主。有75个国家主要依靠水坝来控制洪水,全世界约有近40%的农田是依靠水坝提供灌溉 。

至今,水力发电仍然是最低成本的可再生能源,2002年在南非约翰内斯堡举行的联合国可持续发展委员会的高峰会议,在非洲国家的强烈要求,经过激烈的争论,会议确认大型水电站应该与小水电一样,享有清洁的可再生能源的地位。同时为了减少全球温室气体的排放,会议还制订了计划书、鼓励国际合作、支持有关国家开发水利水电,实现可持续发展。

全球水力发电量主要国家

中国水力发电的情况

中国水能资源十分丰富,在总储量居世界第一 ,2011年水力发电量是世界之冠,是整个欧洲的173%,美国的211%,在2010年中国的水力发电量占全世界水力发电量的17%。按照2008年中国初级能源消费结构的数据,中国的水电、风电和核能占能源消费总量的比重偏低,只有百分之八点九 ,所以需要积极发展可再生能源。 比较其他国家来说,中国的水能利用率偏低是不争的事实 ,因此中国的水力发电还有很大的发展空间。然而,水库会对环境造成不可逆转的破坏,必需小心考虑对环境的影响,而且需注意中国的全年实质水力发电量与水力发电机组的最大发电量比为0.37,水力发电机组的闲置率比大部分已发展国家高。

根据中国在2004年的水能资源普查结果计算,如果将已知的(可开发)水能资源充分开发,以100年计算,中国的常规一次能源总量将能够增30%以上,相应地煤炭在总能源中的比重则可下降至51.4%,水能资源比重将上升到44.6%。如果要以200年计算,水能资源将大大超过其他任何能源资源,成为中国的第一大常规能源。

以2004年曾引起激烈争论的虎跳峡水电站作为例子,假若虎跳峡水电站一旦建成,就相等于建造一座三峡水电站。如果加上其自身的发电效益,其总发电量效益几乎接近于两个三峡水电站。相当于每年节省8000万吨原煤,如果不选择建设虎跳峡水电站,就相等每年流失掉8000万吨原煤,以及同时增加8000万吨原煤所制造出来的温室气体(这并未考虑到水力发电的水库所产生的温室气体排放量) 。

著名水电站

中国

三峡水电站:世界上最大的水电站。其人工水库以面积计算,在全球排第24位。

葛洲坝水电站:位于长江中游,三峡大坝下游38公里。

小浪底水电站:位于黄河中游,三门峡水电站下游130公里,现时小浪底水库被称为北方的“小千岛湖”,景色优美。

新安江水库:又称千岛湖,位于中国浙江省杭州市西南部的淳安县和建德市境内。

丹江口水库:位于湖北省丹江口市和河南省淅川县之间,南水北调工程中线起点。

美国

胡佛水坝

巴西

伊泰普水电站:南美洲最大的伊瓜苏瀑布附近,世界上第二大水电站。

其他国家

:迪什林水电站

参见

海洋能

火力发电

核能发电

风力发电

太阳能发电

世界高坝列表

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信