族谱网 头条 人物百科

开普勒猜想

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1154
转发:0
评论:0
背景面心立方(左)与六方最密堆积(右)示意图若将一个容积很大的容器,以大量体积很小且体积彼此相等的小球给填充(显然不可能完全填满,一定会有些空隙留下),那其密度就是指所有小球体积的总和对容器空间的比值。若欲使该容器中能放入尽可能多的小球,就必须寻找密度最高的排列法,也就是使这些被装填的小球彼此间能尽可能紧密地排在一起。有人做过实验,并发现随机装填的密度大约有65%,然而小心地排列球的位置,可达致更高的密度。若在第一层,先将球以六角形的方式排列(即每个球四周围绕六颗球),然后下一层的球放在“于上一层球之上能让球中心位置最低的点”上,然后其余层以此类推。这就是在市场水果摊上橘子堆叠的方式。每个阶段对于下一层该如何摆放,都有着两种选择,故若一直重复此法,到了最后,会有无限多的、密度相同的球的堆叠存在,此法最为人知的两种形式,即是面心立方和六方最密堆积这两种方法(这两种方法的平均密度相同),此法的...

背景

开普勒猜想

面心立方(左)与六方最密堆积(右)示意图

若将一个容积很大的容器,以大量体积很小且体积彼此相等的小球给填充(显然不可能完全填满,一定会有些空隙留下),那其密度就是指所有小球体积的总和对容器空间的比值。若欲使该容器中能放入尽可能多的小球,就必须寻找密度最高的排列法,也就是使这些被装填的小球彼此间能尽可能紧密地排在一起。

有人做过实验,并发现随机装填的密度大约有65%,然而小心地排列球的位置,可达致更高的密度。若在第一层,先将球以六角形的方式排列(即每个球四周围绕六颗球),然后下一层的球放在“于上一层球之上能让球中心位置最低的点”上,然后其余层以此类推。这就是在市场水果摊上橘子堆叠的方式。每个阶段对于下一层该如何摆放,都有着两种选择,故若一直重复此法,到了最后,会有无限多的、密度相同的球的堆叠存在,此法最为人知的两种形式,即是面心立方和六方最密堆积这两种方法(这两种方法的平均密度相同),此法的平均密度如下:

开普勒猜想说,这是所有可能的装球排列法所能达到的最高密度,没有更高的了。

起源

开普勒猜想

《Strena Seu de Nive Sexangula》这书里的一张图。这图的内容即开普勒猜想

此猜想最早在1611年,由约翰内斯·开普勒在其文章“关于六角雪花”(On the six-cornered snowflake)中提出。他研究了球的排列,并于1606年将之写在与英国数学家兼天文学家托马斯‧哈利欧特(Thomas Harriot)的信中。哈利欧特是华特‧拉雷(Sir Walter Raleigh)的朋友与助手,拉雷给了哈利欧特“在他船支的甲板上该怎样堆叠炮弹才是最好的”这个问题。哈利欧特曾在1591年出版一本关于各种堆叠问题的研究,并曾发展出某种早期的原子论来。

十九世纪的发展

开普勒并未证明他的猜想,而此猜下的下一步发展则由卡尔·弗里德里希·高斯所推展,高斯在1831年证明了若球必须在规则格中进行排列,则开普勒猜想是正确的。

这就表示任何可反证开普勒猜想的球排列方式必然是不规则的排列方式。然而要排除任何可能的不规则排列法是非常困难的,而这也是开普勒猜想之所以如此难以证明的原因。实际上,当装球的空间足够小时,确实是有些不规则排列法的密度是高于面心立方排列法的,但当这些不规则排列法被推广至更大的空间时,其密度总会降低。

在高斯出手后,整个十九世纪就再也没有人在此定理上做出更进一步的推展了。1900年,希尔伯特将此问题包含在希尔伯特的23个问题中,做为希尔伯特第十八问题的一部分。

廿世纪的进展

开普勒猜想的下一步进展,由匈牙利数学家拉斯罗‧费耶斯‧托特(László Fejes Tóth)展开,他在1953年证明了决定任何排列法密度的问题,可变为有限量的计算过程(唯需要的计算量非常大)。这表示至少在原则上,透过穷举法证明此定理是可能的。就如托特所言,一台运算速度足够快的电脑,可使这个理论上的结果,转化为对此问题实际的证明过程。

与此同时,人们也努力地寻找三维空间里任何可能的装球方法的上界。英国数学家在1958年给出了一个78%的上界,之后数学家的努力稍微缩减了此数值,唯此数值距离面心立方密度的数值,也就是上述的74%左右的数值,依旧有一段距离。

项武义在1993年和2001年曾宣称自己借由几何的方法,证明了开普勒猜想。然而嘉伯‧费耶斯‧托特(拉斯罗‧费耶斯‧托特的儿子)却在看此文后,说道:“在考虑细节后,我认为其证明许多关键性的陈述都没有可接受的证明。”

黑尔斯在1994年丢出了对项武义证明较为详尽的批评,项武义则在1995年对此进行回应。现在一般的看法认为项武义的证明是不完善的。

黑尔斯的证明

托马斯·黑尔斯决定根据费耶斯‧托特在1953年提出的思路来证明此猜想,他认为可透过一个有着150个变数的方程式的最小值,来找出任何可能装球排法的最大密度。在1992年,在其研究生山谬尔‧费尔古生(Samuel Ferguson)的帮助下,他开始了一个借由系统化地应用线性规划的方法,对超过五千种不同的装球法的每一个,找出其所提出的方程式的下界的研究。如果此方程式对于这些装球法的下界都超过(此方程式对于)面心立方的值的话,那开普勒猜想就可得证。若要寻找每种情况的下界,则需要解超过十万个线性规划问题。

当托马斯·黑尔斯在1996年公开其计划时,他说这证明的结果近了,然而依旧需要“一两年的时间”来完成它。在1998年,托马斯·黑尔斯宣布他的证明已经完成了。在此阶段,其证明包含了250页的注解与3GB的电脑档案,其中包括了计算机程序、资料和结果等。

虽然这证明在本质上是不寻常的,但因一个由20名裁判员组成的小组接受其内容,《数学年报》(Annals of Mathematics)依旧同意了此论文在其上的发表。2003年,在经过四年的努力后,裁判员小组的头领嘉伯‧费耶斯‧托特报告道他们小组“99%确定了”此证明的正确性,然而他们不能完全确定所有电脑计算的正确性。

托马斯·黑尔斯在2005年出版了一份超过一百页的文档以说明其证明的非电脑部分的细节。费尔古生在2006年及数篇之后发的文则描述了其电脑运作的部分。黑尔斯与费尔古生在2009年,获得了福尔克生奖在离散数学方面杰出论文的奖项(Fulkerson Prize for outstanding papers in the area of discrete mathematics)。

形式证明

在2003年一月,黑尔斯宣布将要开始一个以完成开普勒猜想的形式证明为目标的协作计划。此计划的目标,是要借由产生可由HOL等自动证明检验(Automated proof checking)软件确认其正确性的证明,来移除所有剩余的、和证明有效性相关的不确定成分。这个计划被称作“Project FlysPecK”,其中的F、P和K代表“Formal Proof of Kepler”,也就是“开普勒猜想的形式证明”。黑尔斯认为此计划需要大约20年的时间才能完成。该计划在2014年8月10日宣告完成。在2015年月,黑尔斯和21位协作者共同发表了“开普勒猜想的形式化证明”。

相关问题

参考书目

Aste, Tomaso; Weaire, Denis, The pursuit of perfect packing, Bristol: IOP Publishing Ltd., 2000, ISBN 978-0-7503-0648-5, MR 1786410 

Gauss, Carl F.,Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seber, Göttingische gelehrte Anzeigen, 1831 

Hales, Thomas C.,A proof of the Kepler conjecture, Annals of Mathematics. Second Series, 2005, 162 (3): 1065–1185, ISSN 0003-486X, MR 2179728, doi:10.4007/annals.2005.162.1065 

Hales, Thomas C.,Cannonballs and honeycombs, Notices of the American Mathematical Society, 2000, 47 (4): 440–449, ISSN 0002-9920, MR 1745624  An elementary exposition of the proof of the Kepler conjecture.

Hales, Thomas C., The status of the Kepler conjecture, The Mathematical Intelligencer, 1994, 16 (3): 47–58, ISSN 0343-6993, MR 1281754, doi:10.1007/BF03024356 

Hales, Thomas C., Historical overview of the Kepler conjecture, Discrete & Computational Geometry. an International Journal of Mathematics and Computer Science, 2006, 36 (1): 5–20, ISSN 0179-5376, MR 2229657, doi:10.1007/s00454-005-1210-2 

Hales, Thomas C.; Ferguson, Samuel P., A formulation of the Kepler conjecture, Discrete & Computational Geometry. an International Journal of Mathematics and Computer Science, 2006, 36 (1): 21–69, ISSN 0179-5376, MR 2229658, doi:10.1007/s00454-005-1211-1 

Hsiang, Wu-Yi, On the sphere packing problem and the proof of Kepler"s conjecture, International Journal of Mathematics, 1993, 4 (5): 739–831, ISSN 0129-167X, MR 1245351, doi:10.1142/S0129167X93000364 

Hsiang, Wu-Yi, A rejoinder to T. C. Hales"s article: ``The status of the Kepler conjecture, The Mathematical Intelligencer, 1995, 17 (1): 35–42, ISSN 0343-6993, MR 1319992, doi:10.1007/BF03024716 

Hsiang, Wu-Yi, Least action principle of crystal formation of dense packing type and Kepler"s conjecture, Nankai Tracts in Mathematics 3, River Edge, NJ: World Scientific Publishing Co. Inc., 2001, ISBN 9789810246709, MR 1962807 

Kepler, Johannes,Strena seu de nive sexangula (The six-cornered snowflake), 1611, ISBN 978-1589880535, MR 0927925,lay summary 

Rogers, C. A., The packing of equal spheres, Proceedings of the London Mathematical Society. Third Series, 1958, 8 (4): 609–620, ISSN 0024-6115, MR 0102052, doi:10.1112/plms/s3-8.4.609 

Szpiro, George G., Kepler"s conjecture, New York: John Wiley & Sons, 2003, ISBN 978-0-471-08601-7, MR 2133723 

Fejes Tóth, L., Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Berlin, New York:Springer-Verlag, 1953, MR 0057566 

^/p/flyspeck/wiki/AnnouncingCompletion

^/pdf/1501.02155.pdf


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 约翰内斯·开普勒
早年约翰内斯·开普勒位于威尔(WeilderStadt)的出生地开普勒在小时候看过的1577年大彗星吸引了全欧洲天文学家们的注意。约翰内斯·开普勒于1571年12月27日,也就是当年的圣若望庆日,在威尔(如今为德国巴登-符腾堡州的一部分,位于斯图加特市中心以西30km)的帝国自由城市出生,在他前面有两个哥哥和一个姐姐。他的祖父西博尔德·开普勒(SebaldK.)曾经是这个城镇的市长,但是约翰内斯·开普勒出生时,开普勒家族的家业已经开始衰落。他的父亲海因里希·开普勒(HeinrichK.)为了营生,当了一名危险的雇佣兵,在约翰内斯五岁的时候就离开了家庭,据说后来死于荷兰的“八十年战争”。约翰内斯的母亲凯瑟琳那·古尔登曼(K.Guldenmann)是一名旅店老板的女儿,同时是一名医者和草药商。约翰内斯是早产儿,孩提时体弱多病。然而,他超常的数学才能经常给他外祖父旅馆内的客人留下深刻的印象。他在...
· 开普勒问题
开普勒问题解析所有的吸引性的有心力都能够形成圆形轨道,前提是有心力必须相等于粒子的向心力。给定圆半径,这要求相当于物体的角速度已被决定。在此条目里,不会提到非有心力。一般而言,非有心力不能形成圆形轨道。假设,一个质量为m{\displaystylem\,\!}的粒子移动于一个连心势V(r){\displaystyleV(r)\,\!}内。r{\displaystyler\,\!}是径向坐标。其拉格朗日方程为其中,时间是t{\displaystylet\,\!},角速度是ωω-->≡≡-->dθθ-->dt{\displaystyle\omega\equiv{\frac{d\theta}{dt}}\角动量},运动常数角动量是L=mr2ωω-->{\displaystyleL=mr^{2}\omega\,\!}。详细说明,对于圆形轨道,方程左手边第一项目等于零;如预期,有心力−−-->dVdr...
· 开普勒定律
开普勒定律开普勒的三条行星运动定律改变了整个天文学,彻底摧毁了托勒密复杂的宇宙体系,完善并简化了哥白尼的日心说。开普勒第一定律根据开普勒第一定律,太阳位于椭圆轨道的一个焦点。开普勒第一定律,也称椭圆定律、轨道定律:每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律根据开普勒第二定律,在同样时间间隔内,行星绕着太阳公转所扫过的面积相等。开普勒第二定律,也称等面积定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。这一定律实际揭示了行星绕太阳公转的角动量守恒。用公式表示为开普勒第三定律根据开普勒第三定律,行星绕着太阳公转的周期平方和它们的椭圆轨道的半长轴立方成正比。开普勒第三定律,也称周期定律:各个行星绕太阳公转周期的平方和它们的椭圆轨道的半长轴的立方成正比。由这一定律不难导出:行星与太阳之间的引力与半径的平方成反比。这是艾萨克·牛顿的万有引力定...
· 开普勒空间望远镜
目标和方法开普勒望远镜的构造从下方观看开普勒望远镜开普勒任务的科学目标是探索各种不同行星系的构造,通过勘测大量的恒星样本达到几个目标:对各种不同光谱类型的恒星进行广泛的观测,以确定有多少类似地球的行星或大行星存在或邻近适居带(也称为“古迪洛克行星”)。测量这些行星轨道的大小和形状的范围。估计有多少的行星存在于多星系统中。测量短周期巨大行星的亮度、大小、质量、密度和轨道的大小。使用其他的技术来辨认每个被发现的行星系统和它们的其他成员。确定这些拥有行星的恒星的特性。利用其他方法检测到的系外行星绝大多数都是大行星,它们都像木星或者更大。开普勒是设计来发现只有这种质量的30至600分之一的行星,也就是类似地球这样大小的行星。使用的方法是凌日法,需要重复的观察到行星从恒星前方掠过的凌日现象,如果是地球大小的行星将会造成恒星的视星等降低0.01%的数量级。亮度减少的程度可以用来推测行星的质量,而由两次...
· 约翰尼斯·开普勒有哪些成就?约翰尼斯·开普勒生平简介
约翰尼斯·开普勒(JohannesKepler,1571年12月27日—1630年11月15日),生于符腾堡的威尔德斯达特镇,卒于雷根斯堡[1]。德国杰出的天文学家、物理学家、数学家。开普勒就读于图宾根大学,1588年获得学士学位,三年后获得硕士学位。当时大多数科学家拒不接受哥白尼的日心说。在图宾根大学学习期间,他听到对日心学说所做的合乎逻辑的阐述,很快就相信了这一学说。1630年11月15日,约翰尼斯·开普勒在神圣罗马帝国巴伐利亚公国雷根斯堡病故,享年58岁。开普勒发现了行星运动的三大定律,分别是轨道定律、面积定律和周期定律。这三大定律可分别描述为:所有行星分别是在大小不同的椭圆轨道上运行;在同样的时间里行星向径在轨道平面上所扫过的面积相等;行星公转周期的平方与它同太阳距离的立方成正比。这三大定律最终使他赢得了“天空立法者”的美名。同时他对光学、数学也做出了重要的贡献,他是现代实验光学的...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信