族谱网 头条 人物百科

木卫三

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:747
转发:0
评论:0
发现与命名1610年1月11日,伽利略·伽利莱观测到三颗靠近木星的星体;第二天晚上,他注意到这三颗星体发生了位移。接着,他又发现了第四颗星体,即后来的木卫三。至1月15日晚,伽利略确定这些星体是围绕木星运行的。他声称有权为这些卫星命名,并曾考虑过“科斯米安卫星”(CosmianStars)的名字,但最终将之命名为“美第奇卫星”(MediceanStars)。法国天文学家尼古拉斯-克劳迪·法布里·德·佩瑞斯特建议为美第奇卫星家族的各颗卫星分别命名,但是其建议未被采纳。原本宣称其最初发现伽利略卫星的西门·马里乌斯曾试图将这几颗卫星命名为“朱庇特的萨图尔努斯”(SaturnofJupiter)、“朱庇特的朱庇特”(JupiterofJupiter,即指木卫三)、“朱庇特的维纳斯”(VenusofJupiter)和“朱庇特的墨丘利”(MercuryofJupiter),但也从未被采用。后来在约翰内...

发现与命名

1610年1月11日,伽利略·伽利莱观测到三颗靠近木星的星体;第二天晚上,他注意到这三颗星体发生了位移。接着,他又发现了第四颗星体,即后来的木卫三。至1月15日晚,伽利略确定这些星体是围绕木星运行的。 他声称有权为这些卫星命名,并曾考虑过“科斯米安卫星”(Cosmian Stars)的名字,但最终将之命名为“美第奇卫星”(Medicean Stars)。

法国天文学家尼古拉斯-克劳迪·法布里·德·佩瑞斯特建议为美第奇卫星家族的各颗卫星分别命名,但是其建议未被采纳。 原本宣称其最初发现伽利略卫星的西门·马里乌斯曾试图将这几颗卫星命名为“朱庇特的萨图尔努斯”(Saturn of Jupiter)、“朱庇特的朱庇特”(Jupiter of Jupiter,即指木卫三)、“朱庇特的维纳斯”(Venus of Jupiter)和“朱庇特的墨丘利”(Mercury of Jupiter),但也从未被采用。后来在约翰内斯·开普勒的建议下,马里乌斯又提出了一种命名法:

这种命名法在相当长的时期内并没有被普遍接受,直至20世纪中期才得到普遍使用。在早期的天文学文献中,该卫星均以罗马数字作为指代(该体系由伽利略提出),即被称为木卫三(Jupiter III )或“朱庇特的第三颗卫星”(third satellite of Jupiter)。后来随着土星的卫星群的发现,基于开普勒和马里乌斯建议的命名系统开始被用于指称木星的卫星。 木卫三是伽利略卫星中唯一一颗以男性人物名字命名的。

另外,中国科学史学家、天文学家席泽宗认为,这颗卫星早在前362年就由东周战国时代的天文学家甘德发现,比伽利略和马里乌斯早了两千多年。 不过这种说法没有得到国际普遍的认可。

轨道

木卫三的轨道距离木星107万400公里,是伽利略卫星中距离木星第三近的, 其公转周期为7天3小时。和大部分已知的木星卫星一样,木卫三也为木星所锁定,永远都以同一面面向木星。 它的轨道离心率很小,轨道倾角也很小,接近于木星赤道,同时在数百年的周期里,轨道的离心率和倾角还会以周期函数的形式受到太阳和木星引力摄动的影响。变化范围分别为0.0009-0.0022和0.05-0.32°。 这种轨道的变化使得其转轴倾角在0-0.33°之间变化。

木卫三

  木卫一、木卫二和木卫三三者之间的拉普拉斯共振状态

木卫三和木卫二、木卫一保持着轨道共振关系:即木卫三每公转一周,木卫二即公转两周、木卫一公转四周。 当木卫二位于近拱点、木卫一位于远拱点时,两者之间会出现上合现象;而当木卫二位于近拱点时,它和木卫三之间也会出现上合现象。 木卫一-木卫二和木卫二-木卫三的上合位置会以相同速率移动,遂三者之间没有可能出现三星合现象。这种复杂的轨道共振被称为拉普拉斯共振。

现今的拉普拉斯共振并无法将木卫三的轨道离心率提升到一个更高的值。 0.0013的离心率值可能是早期残留下来的——当时轨道离心率的提升是有可能的。 但是木卫三的轨道离心率仍然让人困惑:如果在现阶段其离心率值无法提升,则必然得表明在其内部的潮汐耗散作用下,它的离心率值正在逐渐损耗。 这意味着离心率值的最后一次损耗就发生在数亿年之前。 由于现今木卫三轨道的离心率相对较低——平均只有0.0015,所以现今木卫三的潮汐热也应该相应的十分微弱。 但是在过去,木卫三可能已经经历过了一种或多种类拉普拉斯共振 ,从而使得其轨道离心率能达到0.01-0.02的高值。 这可能在木卫三内部引起了显著的潮汐热效应;而这种多阶段的内部加热最终造成了现今木卫三表面的槽沟地形。

人们还无法确切知晓木卫一、木卫二和木卫三之间的拉普拉斯共振是如何形成的。现今存在两种假说:一种认为这种状态在太阳系形成之初即已存在; 另一种认为这种状态是在太阳系形成之后才发展出来的。一种可能的形成过程如下:首先是由于木星的潮汐效应,致使木卫一的轨道向外推移,直至某一点与木卫二发生2:1的轨道共振;之后其轨道继续向外推移,同时将部分的旋转力矩转移给木卫二,从而也引起了后者的轨道向外推移;这个过程持续进行,直到木卫二到达某一点,与木卫三形成2:1的轨道共振。 最终三者之间的两对上合现象的位置移动速率保持一致,形成拉普拉斯共振。

物理特性

木卫三

  木卫三内部构造说明

木卫三

  木卫三内部结构

构成

木卫三的平均密度为1.936g/cm 3,表明它是由近乎等量的岩石和水构成的,后者主要以冰体形式存在。 冰体的质量占卫星总质量的46-50%,比之木卫四稍低。 此外可能还存在某些不稳定的冰体,如氨的冰体。 木卫三岩石的确切构成还不为人知,但是很可能接近于L型或LL型普通球粒陨石,这两类陨石较之H球粒陨石,所含的全铁和金属铁较少,而铁氧化物较多。在木卫三上,以质量计,铁和硅的丰度比为1.05-1.27,而在太阳中,则为1.8。

木卫三表面的反照率约为0.43。 冰体水广泛存在于其表面,比重达到50-90%, 高出整体比重许多。利用近红外光谱学,科学家们在1.04、1.25、1.5、2.0和3.0微米波长段发现了强烈的冰体水的吸附带。 明亮地带的槽沟构造可能含有较多的冰体,故显得较为明亮。 除了水外,对伽利略号和地基观测站拍摄的高分辨率近红外光谱和紫外线光谱结果的分析也显示了其他物质的存在,包括二氧化碳、二氧化硫,也可能还包括氰、硫酸氢盐和多种有机化合物。 此外伽利略号还在木卫三表面发现了硫酸镁、硫酸钠等物质。 这些盐类物质可能来自于地表之下的海洋。

木卫三的表面是不对称的:其同轨道方向的一面要亮于逆轨道方向的一面。 这种状况类似于木卫二,而和木卫四的状况正好相反。 此外,木卫三同轨道方向一面似乎富含二氧化硫。 而二氧化碳在两个半球的分布则相对均匀,尽管在极地地区并未观测到它的存在。 木卫三上的撞击坑(除了一个之外)并不富含二氧化碳,这点也与木卫四不同。木卫三的二氧化碳可能在过去的一段时期已经被消耗殆尽了说法不确切。

内部结构

木卫三的地层结构已经充分分化,它含有一个由硫化亚铁和铁构成的内核、由硅酸盐构成的内层地幔和由冰体构成的外层地幔。 这种结构得到了由伽利略号在数次飞掠中所测定的木卫三本身较低的无量纲转动惯量 ——数值为0.3105± 0.0028——的支持。 事实上,木卫三是太阳系中转动惯量最小的固态天体。伽利略号探测到的木卫三本身固有的磁场则与其富铁的、流动的内核有关。拥有高电导率的液态铁的对流是产生磁场的最合理模式。

木卫三

  较暗的尼克尔森区和较亮的哈帕吉亚槽沟之间可谓泾渭分明。

木卫三内部不同层次的厚度取决于硅酸盐的构成成分(其中部分为橄榄石和辉石)以及内核中硫元素的数量。 最可能的情况是其内核半径达到700-900公里,外层冰质地涵厚度达800-1000公里,其余部分则为硅酸盐质地涵。 内核的密度达到了5.5–6g/cm 3,硅酸盐质地涵的密度为3.4–3.6g/cm 3。 与地球内核结构类似,某些产生磁场的模型要求在铁-硫化亚铁液态内核之中还存在着一个纯铁构成的固态内核。若是这种类型的内核,则其半径最大可能为500公里。 木卫三内核的温度可能高达1500-1700K,压力高达100千巴(100亿帕)。

表面特征

木卫三

 旅行者2号拍摄的的木卫三背向木星一面的照片拼接图。较为古老的暗区——伽利略区位于右上方。它和另外一个较小的暗区——马里乌斯区之间隔着较为明亮也较为年轻的乌鲁克沟带。从相对较为年轻的奥里西斯陨石坑中喷出的冰体形成了图像底部明亮的辐射带。

木卫三的表面主要存在两种类型的地形:一种是非常古老的、密布撞击坑的暗区,另一种是较之前者稍微年轻(但是地质年龄依旧十分古老)、遍布大量槽沟和山脊的明区。暗区的面积约占球体总面积的三分之一, 其间含有粘土和有机物质,这可能是由撞击木卫三的陨石带来的。

而产生槽沟地形的加热机制则仍然是行星科学中的一大难题。现今的观点认为槽沟地形从本质上说主要是由构造活动形成的; 而如果冰火山在其中起了作用的话,那也只是次要的作用。 为了引起这种构造活动,木卫三的岩石圈必须被施加足够强大的压力,而造成这种压力的力量可能与过去曾经发生的潮汐热作用有关——这种作用可能在木卫三处于不稳定的轨道共振状态时发生。 引力潮汐对冰体的挠曲作用会加热星体内部,给岩石圈施加压力,并进一步导致裂缝、地垒和地堑的形成,这些地形取代了占木卫三表面积70%的古老暗区。 槽沟地形的形成可能还与早期内核的形成过程及其后星体内部的潮汐热作用有关,它们引起的冰体的相变和热胀冷缩作用可能导致木卫三发生了微度膨胀,幅度为1-6%。 随着星体的进一步发育,热水喷流被从内核挤压至星体表面,导致岩石圈的构造变形。 星体内部的放射性衰变产生的热能是最可能的热源,木卫三地下海洋的形成可能就有赖于它。通过研究模型人们发现,如果过去木卫三的轨道离心率值较现今高很多(事实上也可能如此),那么潮汐热能就可能取放射性衰变热源而代之,成为木卫三最主要的热源。

木卫三

  槽沟地形区中新近形成的撞击坑。上为古拉撞击坑,下为阿克洛奥斯撞击坑。

撞击坑在两种地形中均可见到,但是在暗区中分布的更为密集:这一区域遭遇过大规模的陨石轰击,因而撞击坑的分布呈饱和状态。 较为明亮的槽沟地形区分布的撞击坑则较少,在这里由于构造变形而发育起来的地形成为了主要地质特征。 撞击坑的密度表明暗区的地质年龄达到了40亿年,接近于月球上的高地地形的地质年龄;而槽沟地形则稍微年轻一些(但是无法确定其确切年龄)。 和月球类似,在35-40亿年之前,木卫三经历过一个陨石猛烈轰击的时期。 如果这种情况属实,那么这个时期在太阳系内曾经发生了大规模的轰击事件,而这个时期之后轰击率又大为降低。 在亮区中,既有撞击坑覆盖于槽沟之上的情况,也有槽沟切割撞击坑的情况,这说明其中的部分槽沟地质年龄也十分古老。木卫三上也存在相对年轻的撞击坑,其向外发散的辐射线还清晰可见。 木卫三的撞击坑深度不及月球和水星上的,这可能是由于木卫三的冰质地层质地薄弱,会发生位移,从而能够转移一部分的撞击力量。许多地质年代久远的撞击坑的坑体结构已经消失不见,只留下一种被称为变余结构( 英语: palimpsest )的残迹。

木卫三的显著特征包括一个被称为伽利略区的较暗平原,这个区域内的槽沟呈同心环分布,可能是在一个地质活动时期内形成的。 另外一个显著特征则是木卫三的两个极冠,其构成成分可能是霜体。这层霜体延伸至纬度为40°的地区。 旅行者号首次发现了木卫三的极冠。目前有两种解释极冠形成的理论,一种认为是高纬度的冰体扩散所致,另一种认为是外空间的等离子态冰体轰击所产生的。伽利略号的观测结果更倾向于后一种理论。

大气层和电离层

1972年,一支在印度尼西亚的博斯查天文台工作的印度、英国和美国天文学家联合团队宣称他们在一次掩星现象中探测到了木卫三的大气,当时木星正从一颗恒星之前通过。 他们估计其大气压约为1微巴(0.1帕)。 1979年旅行者1号在飞掠过木星之时,借助当时的一次掩星现象进行了类似的观测,但是得到了不同的结果。 旅行者1号的掩星观测法使用短于200纳米波长的远紫外线光谱进行观测,这比之1972年的可见光谱观测法,在测定气体存在与否方面要精确得多。旅行者1号的观测数据表明木卫三上并不存在大气,其表面的微粒数量密度最高只有 1.5 × 10 cm ,对应的压力小于 2.5 × 10 微巴 。 后一个数据较之1972年的数据要小了5个数量级,说明早期的估计太过于乐观了。

木卫三

  木卫三表面的假色温度图

不过1995年哈勃空间望远镜发现了木卫三上存在稀薄的、以氧为主要成分的大气,这点类似于木卫二的大气。 哈勃望远镜在130.4纳米到135.6纳米段的远紫外线光谱区探测到了原子氧的大气光。这种大气光是分子氧遭受电子轰击而离解时所发出的, 这表明木卫三上存在着以O 2 分子为主的中性大气。其表面微粒数量密度在 1.2–7 × 10 cm 范围之间,相应的表面压力为 0.2–1.2 × 10 微巴 。 这些数值在旅行者号1981年探测的数值上限之内。这种微量级的氧气浓度不足以维持生命存在;其来源可能是木卫三表面的冰体在辐射作用下分解为氢气和氧气的过程,其中氢气由于其原子量较低,很快就逃逸出木卫三了。木卫三上观测到的大气光并不像木卫二上的同类现象一般在空间分布上呈现均一性。哈柏望远镜在木卫三的南北半球发现了数个亮点,其中两个都处于纬度50°地区——即木卫三磁圈的扩散场线和聚集场线的交界处。 同时也有人认为亮点可能是等离子体在下落过程中切割扩散场线所形成的极光。

木卫三

  木卫三上的亮点

中性大气层的存在着木卫三上也应该存在电离层,因为氧分子是在遭受来自磁圈 和太阳远紫外辐射的高能电子轰击之后而电离的。 但是和大气层一样,木卫三电离层的性质也引发了争议。伽利略号的部分观测发现在木卫三表面的电子密度较高,表明其存在电离层,但是其他观测则毫无所获。 通过各种观测所测定的木卫三表面的电子密度处于400–2,500 cm 范围之间。及至2008年,木卫三电离层的各项参数仍未被精确确定。

证明木卫三含氧大气存在的另一种方法是对藏于木卫三表层冰体中的气体进行测量。1996年,科学家们公布了针对臭氧的测量结果。 1997年,光谱分析揭示了分子氧的二聚体(或双原子分子)吸收功能,即当氧分子处于浓相状态时,就会出现这种吸收功能,而如果分子氧藏于冰体之中,则吸收功能最佳。二聚体的吸收光谱位置更多的取决于纬度和经度,而非表面的反照率——随着纬度的提高,吸收光谱的位置就会上移。而相反的,随着纬度的提高,臭氧的吸收光谱则会下移。 实验室的模拟试验表明,在木卫三上表面温度高于100K的地区,O 2 并不会聚合在一起,而是扩散至冰体中。

当在木卫二上发现了钠元素之后,科学家们便开始在木卫三的大气中寻找这种物质,但是到了1997年都一无所获。据估计,钠在木卫三上的丰度比木卫二小13倍,这可能是因为其表面原本就缺乏该物质或磁圈将这类高能原子挡开了。 木卫三大气层中存在的另一种微量成分是原子氢,在距该卫星表面3000公里的太空即已能观测到氢原子的存在。其在星体表面的数量密度约为 1.5 × 10 cm 。

磁层

木卫三

  木卫三磁圈示意图

1995年至2000年间,伽利略号共6次近距离飞掠过木卫三,发现该卫星有一个独立于木星磁场之外的、长期存在的、其本身所固有的磁矩, 其大小估计为 1.3 × 10 T·m ,比水星的磁矩大三倍。 其磁偶极子与木卫三自转轴的交角为176°,这意味着其磁极正对着木星磁场。 磁层的北磁极位于轨道平面之下。由这个长期磁矩创造的偶极磁场在木卫三赤道地区的强度为719±2纳特斯拉, 超过了此处的木星磁场强度——后者为120纳特斯拉。木卫三赤道地区的磁场正对着木星磁场,这使其场线有可能重新聚合。而其南北极地区的磁场强度则是赤道地区的两倍,为1440纳特斯拉。

长期存在的磁矩在木卫三四周划出一个空间,形成了一个嵌入木星磁场的小型磁层。木卫三是太阳系中已知的唯一一颗拥有磁层的卫星。 其磁层直径达4-5R G (R G =2,631.2公里)。 在木卫三上纬度低于30°的地区,其磁层的场线是闭合的,在这个区域,带电粒子(如电子和离子)均被捕获,进而形成辐射带。 磁层中所含的主要离子为单个的离子化的氧原子——O ——这点与木卫三含氧大气层的特征相吻合。而在纬度高于30°的极冠地区,场线则向外扩散,连接着木卫三和木星的电离层。 在这些地区已经发现了高能(高达数十甚至数百千伏)的电子和离子, 可能由此而形成了木卫三极地地区的极光现象。 另外,在极地地区不断下落的重离子则发生了溅射运动,最终使木卫三表面的冰体变暗。

木卫三磁层和木星磁场的相互影响与太阳风和地球磁场的相互作用在很多方面十分类似。 如绕木星旋转的等离子体对木卫三逆轨道方向磁层的轰击就非常像太阳风对地球磁场的轰击。主要的不同之处是等离子体流的速度——在地球上为超音速,而在木卫三上为亚音速。由于其等离子体流速度为亚音速,所以在木卫三逆轨道方向一面的磁场并未形成弓形激波。

除了其本身固有的磁层外,木卫三还拥有一个感应产生的偶极磁场,其存在与木卫三附近木星磁场强度的变化有关。 该感应磁场随着木卫三本身固有磁层方向的变化,交替呈放射状面向木星或背向木星。该磁场的强度较之木卫三本身之磁场弱了一个数量级——前者磁赤道地区的场强为60纳特斯拉,只及木星此处场强的一半。 木卫三的感应磁场和木卫四的以及木卫二的感应磁场十分相似,这表明该卫星可能也拥有一个高电导率的地下海洋。

由于木卫三的内部结构已经是彻底的分化型,且拥有一颗金属内核, 所以其本身固有的磁层的产生方式可能与地球磁场的产生方式类似:即是内核物质运动的结果。 如果磁场是基于发电机原理的产物, 那么木卫三的磁层就可能是由其内核的成分对流运动所造成的。

尽管已知木卫三拥有一个铁质内核,但是其磁层仍然显得很神秘,特别是为何其他与之大小相同的卫星都不拥有磁层。 一些研究认为在木卫三这种相对较小的体积下,其内核应该早已被充分冷却以致内核的流动和磁场的产生都无以为继。一种解释声称能够引起星体表面构造变形的轨道共振也能够起到维持磁层的作用:即木卫三的轨道离心率和潮汐热作用由于某些轨道共振作用而出现增益,同时其地幔也起到了绝缘内核,阻止其冷却的作用。 另一种解释认为是地幔中的硅酸盐岩石中残留的磁性造成了这种磁层。如果该卫星在过去曾经拥有基于发电机原理产生的强大磁场,那么该理论就很有可能行得通。

形成和演化

木卫三可能由木星次星云——即在木星形成之后环绕于其四周的、由气体和尘埃组成的圆盘——的吸积作用所产生。 木卫三的吸积过程持续了大约1万年, 相较于木卫四的10万年短得多。当木卫四开始形成之际,木星次星云中所含的气体成分已经相对较少;这导致了木卫四较长的吸积时间。 相反,由于木卫三是紧接木星之后形成的,这时的次星云还比较浓密,所以其吸积作用所耗时间较短。 相对较短的形成时间使得吸积过程中产生的热量较少逃逸,这些未逃逸的热量导致了冰体的融化和木卫三内部结构的分化:即岩石和冰体相互分开,岩石沉入星体中心形成内核。在这方面,木卫三与木卫四不同,后者由于其较长的形成时间而导致吸积热逃逸殆尽,从而无法在初期融化冰体以及分化内部结构。 这一假说揭示了为何质量和构成物质如此接近的两颗卫星看起来却如此得不同。

在其形成之后,木卫三的内核还保存了大部分在吸积过程和分化过程中形成的热量,它只是缓慢的将少量热量释放至冰质地幔层中,就如同热电池的运作一般。 接着,地幔又通过对流作用将热量传导至星体表面。 不久岩石中蕴含的放射性元素开始衰变,产生的热量进一步加热了内核,从而加剧了其内部结构的分化,最终形成了一个铁-硫化亚铁内核和一个硅酸盐地幔。 至此,木卫三内部结构彻底分化。与之相比较,未经内部结构分化的木卫四所产生的放射性热能只能导致其冰质内部的对流,这种对流有效地冷却了星体,并阻止了大规模的冰体融化和内部结构的快速分化, 同时其最多只能引起冰体与岩石的部分分化。 现今,木卫三的冷却过程仍十分缓慢。 从起内核和硅酸盐地幔所释放出的热量使得木卫三上的地下海洋得以存在, 同时只是缓慢冷却的流动的铁-硫化亚铁内核仍在推动星体内的热对流,并维持着磁圈的存在。 现在木卫三的对外热通量很可能高于木卫四。

探测

木卫三

  “旅行者号”空间探测器

数个飞掠过或绕木星运行的探测器对木卫三进行了仔细勘查。其中的第一批是先驱者10号和先驱者11号, 两者传回的关于木卫三的信息较少。 之后旅行者1号和旅行者2号于1979年飞掠过木卫三。它们精确测定了它的大小,最终证明它的体积要大于土卫六,后者曾被认为大于前者。 此外,这两艘飞船还发现了木卫三上的槽沟地形。

1995年,伽利略号进入环木星轨道。 在1996年至2000年间,它共6次近距离飞掠过木卫三。 这6次飞掠被命名为G1,G2,G7,G8,G28,G29。 在最接近的一次飞掠——G2——中,伽利略号距离木卫三表面仅264公里。 在1996年的G1飞掠中,它发现了木卫三的磁场。 后来又发现了木卫三的地下海洋,并于2001年对外公布。 伽利略号传回了大量的光谱图像,并在木卫三表面发现了数种非冰化合物。 最近前往近距离探测木卫三的探测器是新视野号,它于2007年在前往冥王星的途中飞掠过了木卫三,并在加速过程中拍摄了木卫三的地形图和构成图。

美国航空航天局和欧洲空间局合作的一项旨在探测木星卫星的计划——“木卫二-木星系统任务”将于2020年实施。2009年2月,美国航空航天局和欧洲空间局确认该计划将优先于“土卫六-土星系统任务”得以实施。 但是欧洲空间局的计划资金仍然面临来自该局其他计划的竞争。 “木卫二-木星系统任务”包括美国航空航天局主持的“木星-木卫二轨道飞行器”和欧洲空间局主持的“木星-木卫三轨道飞行器”,可能还包括日本宇宙航空研究开发机构主持的“木星磁场探测器”。

已被取消的环木卫三轨道探测计划是木星冰月轨道器。原计划使用核裂变反应堆作为其动力来源,这将使其能够对木卫三进行详细勘查。 但是由于预算裁剪,该计划于2005年被取消。 另外还有一个被取消的计划被称为“宏伟的木卫三”(The Grandeur of Ganymede)。

参见

木星的卫星

木星冰月轨道器

伽利略卫星

甘德

注释

^ 远拱点可依据轨道长半轴 a 和轨道离心率 e 得出: a ∗ ∗ --> ( 1 + e ) {\displaystyle a*(1+e)} 。

^ 近拱点可依据轨道长半轴 a 和轨道离心率 e 得出: a ∗ ∗ --> ( 1 − − --> e ) {\displaystyle a*(1-e)} 。

^ 表面积可依据星体半径 r 得出: 4 π π --> r 2 {\displaystyle 4\pi r^{2}} 。

^ 体积 v 可依据星体半径 r 得出: 4 π π --> r 3 / 3 {\displaystyle 4\pi r^{3}/3} 。

^ 表面引力可依据星体质量 m 、万有引力常数 G 和半径 r 得出: G m / r 2 {\displaystyle Gm/r^{2}} 。

^ 逃逸速度可依据星体质量 m 、万有引力常数 G 和半径 r 得出: 2 G m r {\displaystyle {\sqrt {\frac {2Gm}{r}}}} 。

^无量纲转动惯量的单位是I/(mr²),其中的I表示转动惯量,m表示质量,r表示最大半径。当无量纲转动惯量的数值为0.4时,即表示该星体是一个质地均匀的球体,而如果数值小于0.4,则表示该星体的物质密度随着深度的增加而加大。

^ 该表面数量密度和压力是依据哈尔等人1998年公布的柱密度计算出来的,当时他们把大气标高假定为20公里,把温度假定为120K。

^ 类拉普拉斯共振和现今伽利略卫星的拉普拉斯共振十分相似,唯一的不同是当处于类拉普拉斯共振时,木卫一-木卫二和木卫二-木卫三的上合位置的移动速率不是同一的,而是成一定的比率——且这个比率一定是有理数。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 木卫一
命名木卫一与地球的比较当初西门·马里乌斯(SimonMarius)并不期望自己也是伽利略卫星的独立发现者,所以西门·马里乌斯把这些卫星留名。他于1614年出版《西门·马里乌斯的木星世界》,他在书中将木星最内侧的大卫星以希腊神话的艾奥来命名,她是众神之王宙斯(在罗马神话中称为朱比特)众多的恋人之一。西门·马里乌斯的命名早期并未受到各界的认同与采用,一直到20世纪中叶才逐渐普遍使用。在早期绝大多数的天文文献中,艾奥都被简单的以罗马数字标示为“JupiterI”(这是伽利略建议的命名系统),或是称为“木星的第一颗卫星”。最常用的名称则是形容词型式的名称:爱奥尼亚。艾奥上的地型特征和地点都使用与艾奥、火、火山、太阳和雷神等各种相关神话故事,其特征和地名都来自但丁的地狱,名字都适当的对应地表火山的本质。由于这些表面都是旅行者1号首度看见,国际天文联合会批准了225个对于艾奥的火山、山脉、高原、和高反...
· 木卫四
发现与命名意大利天文学家伽利略在1610年1月发现了木卫四和其他三颗木星大卫星(木卫一、木卫二和木卫三)。木卫四的名称来自希腊神话中宙斯的爱人之一卡里斯托,她是一位与月亮女神阿尔忒弥斯关系密切的宁芙(有时也被认为是吕卡翁的女儿)。西门·马里乌斯在该星被发现后不久提出该名称,马里乌斯则认为这是约翰内斯·开普勒的建议。然而天文学家在很长时间内都不欢迎这个名称,直到20世纪中期才广泛采用。很多早期的天文学文献中均以罗马数字来称呼这颗卫星(该体系由伽利略所提出),即称为木卫四(JupiterIV)或“朱庇特的第四颗卫星”(thefourthsatelliteofJupiter)。轨道木卫四(左下角)、木星和木卫二(位于木星大红斑的左下方)。木卫四是距离木星最远的伽利略卫星,约为188万千米(是木星直径的26.3倍),比木卫三的轨道半径(107万千米)还要远得多。由于木卫四轨道半径较大,所以目前不处...
· 精卫衔木
引子:东海苍茫的海面上,波涛汹涌,巨浪滔天。女娲娘娘降下旨意,要在人间选择一个学过管理学的优秀毕业生去当天帝,统治天上人间,维护天地时空秩序。经过考试和面试,终于选出一人,此人眉清目秀,关关雎鸠,十分有才,女娲第一眼就看上他了。女娲说:“你题答得很不错,而且管理理念十分先进,又很帅,我想,你管理天上人间,那再合适不过了,神仙们和人民都会心服口服的。”女娲向人间问道:“他当天帝,管理你们,你们可愿意?”人们回答:“我愿意!”女娲很高兴,一个说不的人都没有,全票通过。又问神仙们:“你们可愿意?”神仙们回答:“女娲娘娘万岁!”于是天帝就这样选出来了,在收拾行李准备上天之前,天帝的老婆还为天帝生下一女,然而天帝很不满意,因为他希望要一个男孩子,因为男孩子将来可以继承帝位嘛。天帝说:“哼,怎么是个女的?!你已经流产多次,难道连生男生女这样简单的规律到现在还都没有掌握吗?管理学那么难的规律我都能掌握,...
· 木卫十一
概述木卫十一是一颗逆行的不规则卫星,是在威尔逊山天文台被赛斯·尼克尔森发现,以希腊神话中的的加尔尼(carme)命名。木卫十一直到1975年才有正式的名称,在那之前它只叫做JupiterXI,而在当时也有人叫它潘,但现在潘是土卫十八的名称。轨道木卫十一与木星的其它十七颗卫星一起属于加尔尼群,它们的轨道类似。加尔尼群的特征是它们都是逆行,而且它们的轨道倾角都在164.9°至165.5°之间,则它们离木星的距离从2300万公里到2400万公里不等。参见木星的卫星
· 大卫·铃木
早年生活铃木于温哥华出生,是当地的第三代日裔,其家人为20世纪初的日本移民。1942年在他六岁的时候,二战爆发,由于日本是当时的轴心国,因此当地的日裔遭审查,铃木全家也遭不列颠哥伦比亚省当局拘留,直至1945年二战结束,期间家人的洗衣店给政府卖掉。战后,铃木与当地其他日裔一样,被迫迁往洛矶山脉东部地区生活,他们选择前往安大略省。学术事业在完成中学课程后,铃木前往美国接受专上教育,他于1958年在麻省安默斯特学院取得文学士学位,1961年于芝加哥大学取得动物学博士学位。在他从事研究事业早期,曾修读遗传学,研究黑腹果蝇的基因。为了能以自己的姓氏来命名新发现的基因,他选择研究拥有温度敏感显性基因的品种,其发现的基因突变获得多个奖项。凭著多项科学及环境问题上的成就,铃木获得美国、加拿大及澳大利亚的院校颁发荣誉博士学位。1950年代后期,铃木前往加州伯克利继续进修,同时看到当时的黑人民权运动,他决定...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信