族谱网 头条 人物百科

庞加莱猜想

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:830
转发:0
评论:0
基本描述在1900年,庞加莱曾声称,用他基于恩里科·贝蒂的工作而发展出的同调论,可以判定一个三维流形是否三维球面。不过,他在1904年发表的一篇论文中,举出了一个反例,现在称为庞加莱同调球面,与三维球面有相同的同调群。他引进了一个新的拓扑不变量,称为基本群,并且证明他的反例与三维球面的基本群不同。三维球面有平凡基本群,也就是说是单连通的。他提出以下猜想:上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个柳橙表面的橡皮筋,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮筋以适当的方向被伸缩在一个甜甜圈表面上,那么不扯断橡皮筋或者甜甜圈,是没有办法把它不离开表面而又收缩到一点的。我们说,柳橙表面是“单连通的”,而甜甜圈表面则不是。该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“...

基本描述

在1900年,庞加莱曾声称,用他基于恩里科·贝蒂的工作而发展出的同调论,可以判定一个三维流形是否三维球面。不过,他在1904年发表的一篇论文中,举出了一个反例,现在称为庞加莱同调球面,与三维球面有相同的同调群。他引进了一个新的拓扑不变量,称为基本群,并且证明他的反例与三维球面的基本群不同。三维球面有平凡基本群,也就是说是单连通的。他提出以下猜想:

上述简单来说就是:每一个没有破洞的封闭三维物体,都拓扑等价于三维的球面。粗浅的比喻即为:如果我们伸缩围绕一个柳橙表面的橡皮筋,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点;另一方面,如果我们想象同样的橡皮筋以适当的方向被伸缩在一个甜甜圈表面上,那么不扯断橡皮筋或者甜甜圈,是没有办法把它不离开表面而又收缩到一点的。我们说,柳橙表面是“单连通的”,而甜甜圈表面则不是。

该猜想是一个属于代数拓扑学领域的具有基本意义的命题,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响,对于一维与二维的情形,此猜想是对的,现在已经知道,它对于任何维数都是对的。

证明历史

20世纪

这个问题曾经被搁置了很长时间,直到1930年怀特海(J. H. C. Whitehead)首先宣布已经证明然而又收回,才再次引起了人们的兴趣。怀特海提出了一些有趣的三流形实例,其原型现在称为怀特海流形。

1950和1960年代,又有许多著名的数学家包括R·H·宾(R. H. Bing)、沃夫冈·哈肯(Wolfgang Haken)、爱德华·摩斯(Edwin E. Moise)和Christos Papakyriakopoulos声称得到了证明,但最终都发现证明存在致命缺陷。1961年,美国数学家史提芬·斯梅尔采用十分巧妙的方法绕过三、四维的困难情况,证明了五维以上的庞加莱猜想。这段时间对于低维拓扑的发展非常重要。这个猜想逐渐以证明极难而知名,但是证明此猜想的工作增进了对三流形的理解。1981年美国数学家麦克·傅利曼(Michael Freedman)证明了四维猜想,至此广义庞加莱猜想得到了证明。

1982年,理查德·哈密顿引入了“里奇流”的概念,并以此证明了几种特殊情况下的庞加莱猜想。在此后的几年中,他进一步地发展了此方法,后来被佩雷尔曼的证明所使用。

21世纪

庞加莱猜想

俄罗斯数学家格里戈里·佩雷尔曼

在2002年11月和2003年7月之间,俄罗斯的数学家格里戈里·佩雷尔曼在arXiv.org发表了三篇论文预印本,并声称证明了几何化猜想。

在佩雷尔曼之后,先后有3组研究者发表论文补全佩雷尔曼给出的证明中缺少的细节。这包括密歇根大学的布鲁斯·克莱纳和约翰·洛特;哥伦比亚大学的约翰·摩根和麻省理工学院的田刚;以及理海大学的曹怀东和中山大学的朱熹平。

2006年8月,第25届国际数学家大会授予佩雷尔曼菲尔兹奖,但佩雷尔曼拒绝接受该奖。数学界最终确认佩雷尔曼的证明解决了庞加莱猜想。

2010年3月18日,克雷数学研究所对外公布,俄罗斯数学家格里戈里·佩雷尔曼因为破解庞加莱猜想而荣膺千禧年大奖。

最终证明争议

2006年6月3日,曹怀东和朱熹平公开声称佩雷尔曼对于庞加莱猜想证明中有漏洞,由他们补全,做出最终证明,于《亚洲数学期刊》发表论文。据报道,丘成桐曾表示曹怀东和朱熹平才是第一个给出了庞加莱猜想的完全证明。

2006年8月28日出版的《纽约客》杂志发表西尔维亚·娜莎和大卫·格鲁伯的长文《流形的命运——传奇问题以及谁是破解者之争》。该文介绍了佩雷尔曼等人的工作并描画了“一个令人厌恶的丘成桐的形象,暗示他为他的学生曹怀东和他支持的朱熹平的工作宣传了过多的功劳。”,因曹怀东与朱熹平的论文未经同行评审,丘成桐被质疑以期刊主编的身份,发表有利于他们研究团队的论文成果。此文发表后,引发了很大争议。丘成桐表示可能采取法律行动,由律师发出信函,要求杂志更正,包括汉密尔顿在内的多名数学家发表声明表示文章没有正确地反映他们对丘的评价。

一名加州理工学院的研究者指出曹、朱论文中引理7.1.2与克莱纳和洛特2003年发表的成果几乎完全相同。据此,洛特指责曹和朱两人有剽窃的行为。此后,曹怀东和朱熹平在原刊发表纠错声明,确认了此引理是克莱纳和洛特的成果,解释没有指明出处是由于编辑上的差错,并为此向两位原作者致歉。在12月发表的修正论文《庞加莱猜想与几何化猜想的汉米尔顿-佩雷尔曼证明》(Hamilton-Perelman"s Proof of the Poincare Conjecture and the Geometrization Conjecture)中,曹怀东与朱熹平不再宣称是由他们做出最终证明,他们的工作只是对汉米尔顿-佩雷尔曼证明做出详尽阐述。

相关资讯

Bruce Kleiner, John Lott. Notes on Perelman"s papers. Geometry and Topology. 2008, 12 (5): 2587–2855. arXiv:math/0605667. doi:10.2140/gt.2008.12.2587. 

Huai-Dong Cao, Xi-Ping Zhu. Hamilton-Perelman"s Proof of the Poincaré Conjecture and the Geometrization Conjecture. arXiv:math.DG/0612069[math.DG]. December 3, 2006. 

John W. Morgan, Gang Tian. Ricci Flow and the Poincaré Conjecture. arXiv:math/0607607[math.DG]. 2006. : Detailed proof, expanding Perelman"s papers.

O"Shea, Donal. The Poincaré Conjecture: In Search of the Shape of the Universe. Walker & Company. December 26, 2007. ISBN 978-0-8027-1654-5. 

Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159[math.DG]. November 11, 2002. 

Perelman, Grisha. Ricci flow with surgery on three-manifolds. arXiv:math.DG/0303109[math.DG]. March 10, 2003. 

Perelman, Grisha. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math.DG/0307245[math.DG]. July 17, 2003. 

Szpiro, George. Poincaré"s Prize: The Hundred-Year Quest to Solve One of Math"s Greatest Puzzles. Plume. July 29, 2008. ISBN 978-0-452-28964-2. 

John Stillwell. Poincaré and the early history of 3-manifolds. Bulletin of the American Mathematical Society. 2012, 49 (4): 555–576. 

参见

千禧年大奖难题

流形的命运——传奇问题以及谁是破解者之争, 西尔维亚·娜莎、大卫·格鲁伯,原载于《纽约客》。原文

年度重大突破:庞加莱猜想--终于被证明,一个世纪数学问题的解决变成一场喜忧参半的奖励,《科学》2006年终专题文章 - 丹娜·麦肯锡。原文


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 庞加莱奖
获奖人
· 庞加莱群
基本解释等距同构是一种事物在事件间的时空轨迹上的移动方式,而这样做是不会影响原时的。例如,所有事件被延后了两小时,而这两小时中包括了两项事件,以及你从事件一到事件二的路径,那么你的计时器所量度出的,两事件间的时间间距会是一样的。又例如,所有事物被移到西边五公里外的地方,那么你所量度出的时间间距也不会改变。而这种移动的结果是不会影响棍子长度的。如果我们无视重力效应的话,那么一共有十种移动方式:在时间上的平移,在三维空间中任一维上的平移,在三条空间轴上任一条的(定角)旋转,或三维任一方向上的直线性洛伦兹变换,因此是1+3+3+3=10。如果将这种等距同构结合起来(即执行一个之后再执行另一个),那么所得的结果也会是等距同构(然而,这一般来说只限于上述十种基本移动之间的线性组合)。这些等距同构因此形成了一个群。也就是说,它们当中存在单位元(即不移动,停留在原先的地方)及逆元(将事物移动回原先的位置...
· 庞加莱度量
黎曼曲面上的度量概要复平面上的度量可写成一般形式这里λ是z与z¯¯-->{\displaystyle{\overline{z}}}的一个实正函数。复平面上曲线γ的长度为复平面上子集M之面积是这里∧∧-->{\displaystyle\wedge}是用于构造体积形式的外积。度量的行列式等于λλ-->4{\displaystyle\lambda^{4}},故而行列式的平方根是λλ-->2{\displaystyle\lambda^{欧几里得复平面上的欧几里得体积形式为dx∧∧-->dy{\displaystyledx\wedgedy},从而我们有函数ΦΦ-->(z,z¯¯-->){\displaystyle\Phi(z,{\overline{z}})}称为度量的势能(potentialofthemetric),如果拉普拉斯–贝尔特拉米算子为度量的高斯曲...
· 庞加莱的主要成就?庞加莱为什么拒绝相对论
庞加莱,1854年出生于法国,是著名的数学家,天体学家,数学物理学家。庞加莱研究的主要有数论,代数学,几何学,多复变函数论等等。他在数学方面取得的巨大成就对现代数学都产生了重要影响,那么,庞加莱关于数学创造有什么内容呢?提及庞加莱关于数学创造,就不得不说起组合拓扑学。他曾在6篇论文里创造了组合拓扑学,并且,通过引进贝蒂数、挠系数和基本群等一些概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,并且凭借这些概念成立了欧拉—庞加莱公式,并对流形的同调对偶定理进行了证明。除此之外,庞加莱对数学方面的创造还表现在数学物理和偏微分方程方面所取得的成就。庞加莱使用括去法(sweepingout)证明了狄利克雷问题解的存在。让人感到惊喜的是,后来竟然推动位势论发展到了一个新的阶段。在1881~1886年,庞加莱发表四篇论文,内容是关于微分方程所确定的积分曲线,从而创立...
· 庞加莱不等式
叙述经典形式设p是一个大于等于1的实数,n是一个正整数。ΩΩ-->{\displaystyle\Omega}是n维欧几里得空间Rn{\displaystyle\mathbb{R}^{n}}上的一个子集开子集,并且其边界是满足利普希兹条件的区域(也就是说它的边界是一个利连续函数续函数的图像)。在这种情况下,存在一个只与ΩΩ-->{\displaystyle\Omega}常数p有关的常数C,使得对索伯列夫空间W1,p(ΩΩ-->){\displaystyle\mathbb{W}^{1,p}(\Omega)}中所有的函数u,都有:其中的∥∥-->⋅⋅-->∥∥-->Lp{\displaystyle\|\cdot\|_{L^{p}}}指的是Lp空间之中的范数,是函数u在定义域ΩΩ-->{\displaystyle\Omega}上的平均值,而|ΩΩ-->...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信