族谱网 头条 人物百科

拉格朗日点

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:2163
转发:0
评论:0
位置五个拉格朗日点之定义及位置如下:L1在M1和M2两个大天体的连线上,且在它们之间。例如一个围绕太阳旋转的物体,它距太阳的距离越近,它的轨道周期就越短。但是这忽略地球的万有引力对其产生的拉力的影响。如果这个物体在地球与太阳之间,地球引力的影响会减弱太阳对这物体的拉力,因此增加这个物体的轨道周期。物体距地球越近,这种影响就越大。在L1点,物体的轨道周期恰好等于地球的轨道周期。太阳及日光层探测仪(SOHO)即在日-地系统的L1点上运行。L2在两个大天体的连线上,且在较小的天体一侧。日地系统的L2在地球远离太阳的一侧。一般来讲,一个物体距太阳的距离越远,它的轨道周期通常就越长,但L2点上的物体还受到地球的引力,所以轨道周期变地与地球的相等。日地系统的L2通常用于放置空间天文台。因为L2上的物体可以保持背向太阳和地球的方位,易于保护和校准。威尔金森微波各向异性探测器已经在日-地系统的L2点上运行...

位置

五个拉格朗日点之定义及位置如下:

拉格朗日点

L1

在M1和M2两个大天体的连线上,且在它们之间。

例如一个围绕太阳旋转的物体,它距太阳的距离越近,它的轨道周期就越短。但是这忽略地球的万有引力对其产生的拉力的影响。如果这个物体在地球与太阳之间,地球引力的影响会减弱太阳对这物体的拉力,因此增加这个物体的轨道周期。物体距地球越近,这种影响就越大。在L1点,物体的轨道周期恰好等于地球的轨道周期。太阳及日光层探测仪(SOHO)即在日-地系统的L1点上运行。

L2

在两个大天体的连线上,且在较小的天体一侧。

日地系统的L2在地球远离太阳的一侧。一般来讲,一个物体距太阳的距离越远,它的轨道周期通常就越长,但L2点上的物体还受到地球的引力,所以轨道周期变地与地球的相等。日地系统的L2通常用于放置空间天文台。因为L2上的物体可以保持背向太阳和地球的方位,易于保护和校准。威尔金森微波各向异性探测器已经在日-地系统的L2点上运行。詹姆斯韦伯太空望远镜将要被放置在日-地系统的L2点上。嫦娥二号北京时间2011年8月25日23时27分,经过77天的飞行,“嫦娥二号”在世界上首次实现从月球轨道出发,受控准确进入距离地球约150万公里远的、太阳与地球引力平衡点——拉格朗日L2点的环绕轨道。

地月系统的L2在月球远离地球的一侧(月球背面)。2014年中国探月工程三期再入返回飞行试验器服务舱曾进入环绕地月L2点的李萨如轨道开展试验。服务舱实现了环绕地月L2点飞行三圈,验证了轨道设计、轨道控制和轨道维持技术。

L3

在两个大天体的连线上,且在较大的天体一侧。

一些科幻小说和漫画会在L3点创造一个“反地球”。

L4

拉格朗日点

L4点受两天体重力的合力指向系统的质心

在以两天体连线为底的等边三角形的第三个顶点上,且在较小天体围绕两天体系统质心运行轨道的前方。此点稳定的原因在于,它到两大物体的距离相等,其对两物体分别的引力之比,正好等于两大物体的质量之比。因此,两个引力的合力正好指向该系统的质心,合力大小正好提供该物体公转所需之向心力,使其旋转周期与质量较小天体相同并达成轨道平衡。该系统中,两大物体和L4点上物体围绕质心旋转,旋转中心与质心重合。事实上,L4与L5点上的物体的质量不须小到可忽略。L4和L5处,小物体受太阳和地球的引力的合力指向日地共同质心且大小正合适。

L5

在以两天体连线为底的等边三角形的第三个顶点上,且在较小天体围绕两天体系统质心运行轨道的后方。

L4和L5有时称为三角拉格朗日点或特洛伊点。科幻作品(如漫画、小说)所说的用于放置殖民卫星的拉格朗日点特指L4和L5,不包括L1、L2和L3。

实质上是三个物体围绕共同质心转动。

平衡性

拉格朗日点

严格而言,首先拉格朗日点只算是二星体连线之法平面内的稳定点,而在三维空间内则不稳定:考虑L1:若垂直于中线地推移测试质点,则有一力将其推回平衡点(稳定平衡);但若测试质点漂向任一星体,则该星体之引力会将其拉向自己(不稳定平衡)。(参见平衡)L1、L2、L3在这条直线上不稳定,如果把物体放在这上面的话,它马上会离开这个点。所以,有一种轨道的设计就是,它是围绕L2做周期运动(Halo orbit(英语:Halo orbit)),这样的话,我们的卫星只需少量调节便能维持其轨道。

此对比:若M1比M2大于24.96,则处于L4与L5的物体是稳定平衡:当一测试质点偏离此平衡点,则科里奥利力会将其轨道扭曲成(相对于旋转座标之)扁豆状。太阳-木星系统有几千枚小行星,通称为“特洛伊小行星”,俱划此等轨迹。太阳-火星、太阳-土星、木星-木卫、土星-土卫等系统亦有类似星体。日-地系统中亦有2010 TK7(第一颗地球特洛伊小行星),在二十世纪五十年代发现尘雾围绕L4与L5。在地-月系统之L4与L5点亦发现比对日照更微弱之尘雾。

地球的伴星(companion object)克鲁特尼以类似特洛伊之轨道“围绕”地球,但不是真正的特洛伊卫星,它基本上以一周期略小于一年之椭圆轨道环绕太阳,接近地球时从地球公转提取动能而进入较高之轨道。当克鲁特尼被地球追上,则会交回此动能,跌落低能轨道,重新开始循环。

土卫十一(Epimetheus)与土卫十(Janus)有类似关系,唯因其质量相若,故周期性地互换轨道。

另一类似位形为轨道共振,其中各星体之周期,因其相互作用,成简单整数比。

土卫三(Tethys)的L4和L5点有两个小卫星,土卫十三(Telesto)和土卫十四(Calypso)。土卫四(Dione)的L4点有一个卫星土卫十二(Helene)。

参考文献

^NASA关于SOHO工程的网站

^王赤.科普:什么是拉格朗日点?2013年01月24日

^我国航天器首次到达地月L2点南方日报.2015年01月06日

^王赤:介绍拉格朗日点中国科学院.2011-09-25

^关于拉格朗日点的介绍

参见

小行星带

特洛伊小行星

宇宙殖民地

宇宙殖民地 (高达世界)

机动战士钢弹


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 洛朗·拉福格
生平拉福格1986年入读巴黎高等师范学院。他在巴黎第十一大学奥赛数学实验室算术及代数几何小组受GérardLaumon指导完成博士论文,也在那里做初级研究员。现时在法国国家科学研究中心任高级研究员至今。2000年起他担任法国高等科学研究所数学教授。2002年在中国北京举行的第24届国际数学家大会上,他获颁菲尔兹奖,表彰他对数论和代数几何贡献突出。他推广同是菲尔兹奖得主乌克兰数学家弗拉基米尔·德林费尔德的方法,证明朗兰兹猜想在特征为正的代数曲线函数域的GLn{\displaystyleGL_{n}}上成立。2003年11月18日,他成为法兰西科学院院士。对教育的关注2004年,他开始关注法国教育体系,接触教育关注组织“拯救语文教育”(Sauverleslettres)。他和阿兰·孔涅和其他科学家共同署名发表文章《为科学和技术的未来所需的基础知识:如何...
· 欧拉-拉格朗日方程
第一方程设f=f(x,y,z){\displaystylef=f(x,\y,\z)},以及fy,fz{\displaystylef_{y},\f_{z}}在[a,b]××-->R2{\displaystyle[a,\b]\times\mathbb{R}^{2}}中连续,并设泛函若y∈∈-->C1[a,b]{\displaystyley\inC^{1}[a,\b]}使得泛函J(y){\displaystyleJ(y)}取得局部平稳值,则对于所有的x∈∈-->(a,b){\displaystylex\in(a,\b)},推广到多维的情况,记若y→→-->′(x)∈∈-->(C1[a,b])n{\displaystyle{\vec{y}}"(x)\in(C^{1}[a,b])^{n}}使得泛函J(y→→-->)=∫∫-->...
· 拉格朗日力学
自由度力学系统可以由一组坐标来描述。例如,一个质点的运动(在笛卡尔坐标系中)由x、y、z三个坐标来描述。一般而言,N{\displaystyleN}个质点组成的力学系统由3N{\displaystyle3N}个坐标来描述。力学系统中常常存在着各种约束,使得这3N{\displaystyle3N}个坐标并不都是独立的。力学系统的独立坐标的个数称之为自由度。对于N{\displaystyleN}个质点组成的力学系统,若存在m{\displaystylem}个约束,则系统的自由度为广义坐标在矢量力学中,约束的存在体现于作用于系统的约束力。约束力引入额外的未知量,通常使问题变得更为复杂。但若能选取适当的s{\displaystyles}个完全满足约束条件的独立坐标,则约束不再出现在问题中,只需要求解关于s{\displaystyles}个未知变量的方程,使问题得以大大简化。而如果运用牛顿力学来解约...
· 拉格朗日量
概念拉格朗日量是动能T{\displaystyleT}与势能V{\displaystyleV}的差值:通常,动能的参数为广义速度q˙˙-->1,q˙˙-->2,q˙˙-->3,……-->,q˙˙-->N{\displaystyle{\dot{q}}_{1},{\dot{q}}_{2},{\dot{q}}_{3},\dots,{\dot{q}}_{N}}(符号上方的点号表示对于时间t{\displaystylet}的全导数),而势能的参数为广义坐标q1,q2,q3,……-->,qN;t{\displaystyleq_{1},q_{2},q_{3},\dots,q_{N};t},所以,拉格朗日量的参数为q1,q2,q3,……-->,qN;q˙˙-->1,q˙˙-->2,q˙˙-->3,……-->,q˙˙-->N;t{\di...
· 约瑟夫·拉格朗日
祖籍与姓氏拉格朗日父姓拉格朗日亚(Lagrangia)。父系为法国后裔。曾祖父是法国骑兵上校,到意大利撒丁王国都灵(Turin)后与罗马家族的人结婚定居;祖父任都灵的公共事务和防务局会计,又同当地人结婚。父亲也在都灵政府任同一职位,母亲来自都灵旁的坎比亚诺。拉格朗日在都灵出生受洗记录上的正式名字为朱塞佩·洛德维科·拉格朗吉亚(GiuseppeLodovico,Lagrangia)。父名弗朗切斯科·洛德维科·拉格朗吉亚(FrancescoLodovico,Lagrangia);母名泰雷萨·格罗索(TeresaGrosso)。他曾用过的姓有德·拉·格朗日(DelaGrange),拉·格朗日(LaGrange)等。去世后,法兰西科学院给他写的颂词中,正式用现在姓名(Lagrange)。生平早年拉格朗日的父母共有11个子女,但大多数夭折;拉格朗日为长子,是活到成年的两个之一。拉格朗日家境原本富裕且...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信