族谱网 头条 人物百科

VA液晶

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:358
转发:0
评论:0
原理初期状态的VA液晶中液晶分子垂直于偏光镜平面排列,这时候光线无法透过,屏幕为黑色。对导电板施加电压后,液晶呈倒伏状排列,导致光线双折射透过液晶。初期状态液晶分子垂直排列,背光几乎无法透过,因此能实现大对比度。电压大小能控制液晶分子倒伏程度,实现颜色和亮度的调节。最初液晶分子只能向一个方向倒伏,所以视角有方向性。随着多域(Multi-Domain)技术出现,将液晶分子分为上下左右前后6个域倒伏彻底解决了方向性问题。优点对比度较高。色温较温和。漏光程度较低。可视角提升到178度,有改善TN版面失色的问题。缺点虽然有跟IPS一样的178度可视角,但左右看屏幕会有偏白的情况。色彩较IPS低。

原理

初期状态的VA液晶中液晶分子垂直于偏光镜平面排列,这时候光线无法透过,屏幕为黑色。对导电板施加电压后,液晶呈倒伏状排列,导致光线双折射透过液晶。初期状态液晶分子垂直排列,背光几乎无法透过,因此能实现大对比度。电压大小能控制液晶分子倒伏程度,实现颜色和亮度的调节。

最初液晶分子只能向一个方向倒伏,所以视角有方向性。随着多域(Multi-Domain)技术出现,将液晶分子分为上下左右前后6个域倒伏彻底解决了方向性问题。

优点

对比度较高。

色温较温和。

漏光程度较低。

可视角提升到178度,有改善TN版面失色的问题。

缺点

虽然有跟IPS一样的178度可视角,但左右看屏幕会有偏白的情况。

色彩较IPS低。

 

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 液晶
历史1850年,普鲁士医生鲁道夫·菲尔绍等人发现神经纤维的萃取物中含有一种不寻常的物质。1877年,德国物理学家奥托·雷曼运用偏光显微镜首次观察到了液晶化的现象,但他对此现象的成因并不了解。1888年3月14日,奥地利布拉格德国大学的植物生理学家弗里德里希·莱尼泽(FriedrichReinitzer)借由在植物内加热苯甲酸胆固醇脂研究胆固醇,观察到胆固醇苯甲酸酯在热熔时的异常表现。该物质在145.5℃时熔化,产生了带有光彩的混浊物,温度升到178.5℃后,光彩消失,液体透明。此澄清液体稍微冷却,混浊又复出现,瞬间呈现蓝色。莱尼泽反复确定他的发现后,向德国物理学家奥托·雷曼(OttoLehmann)请教。当时雷曼建造了一座具有加热功能的显微镜去探讨液晶降温结晶之过程,后来更加上了偏光镜,成为深入研究莱尼泽的化合物的重要仪器。从那时开始,雷曼的精力完全集中在该类物质。他开始以为这种物质是软晶...
· 什么是液晶
什么是液晶液晶(LiquidCrystal)是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。人们熟悉的物质状态(又称相)为气、液、固,较为生疏的是电浆和液晶(LiquidCrystal,简称LC)。液晶相要具有特殊形状分子组合始会产生,它们可以流动,又拥有结晶的光学性质。液晶的定义,现在以放宽而囊括了在某一温度范围可以是现液晶相,在较低温度为正常结晶之物质。而液晶的组成物质是一种有机化合物,也就是以碳为中心所构成的化合物。同时具有两种物质的液晶,是以分子间力量组合的,它们的特殊光学性质,又对电磁场敏感,极有实用价值。1888年,澳大利亚叫莱尼茨尔的科学家,合成了一种奇怪的有机化合物,它有两个熔点。把它的固态晶体加热到145℃时,便熔成液体,只不过是浑浊的,而一切纯净物质熔化时却是透明的。如果继续加热到175℃时,它似乎再次熔化,变成清澈透...
· 液晶显示器
构造液晶显示器构造图液晶显示器的每个像素由以下几个部分构成:悬浮于两个透明电极(氧化铟锡)间的一列液晶分子层,两边外侧有两个偏振方向互相垂直的偏振过滤片。如果没有电极间的液晶,光通过其中一个偏振过滤片其偏振方向将和第二个偏振片完全垂直,因此被完全阻挡了。但是如果通过一个偏振过滤片的光线偏振方向被液晶旋转,那么它就可以通过另一个偏振过滤片。液晶对光线偏振方向的旋转可以通过静电场控制,从而实现对光的控制。液晶分子极易受外加电场的影响而产生感应电荷。将少量的电荷加到每个像素或者子像素的透明电极产生静电场,则液晶的分子将被此静电场诱发感应电荷并产生静电扭力,而使液晶分子原本的旋转排列产生变化,因此也改变通过光线的旋转幅度。改变一定的角度,从而能够通过偏振过滤片。在将电荷加到透明电极之前,液晶分子的排列被电极表面的排列决定,电极的化学物质表面可作为晶体的晶种。在最常见的TN液晶中,液晶上下两个电极垂...
· 液晶应用前景
在我们的日常生活中,一般物质以三种形态——固相、液相、气相而存在。众所周知,在常压下,水在0℃以下呈固相(冰),在0℃~100℃时呈液相,在100℃以上时则变为气相(水蒸气)。虽然中学课本中都是这么说的,然而,物质的这三种形态决非其形态的全部。实际上有许多种有机物,都呈现一种介乎于液相与固相之间的形态,科学家称这种异常物质形态为“液晶”。“液晶”这一术语乍听起来有点矛盾,而它的确是一种具有各种迷人特性,并可广泛实际应用的物质形态。一百多年前,一位名叫F·赖尼策尔的奥地利植物学家在一种胆固醇的衍生物——胆甾醇苯酸酯中首先发现了一种新奇的物质相。在由固相融为液相的过程中,这种衍生物呈现出了一种奇特的、用当时的幼稚物质理论无法解释的特性。此后,科学家做过种种研究,试图弄清楚这种丰富多彩的物质形态——液晶相。液晶除了是一种物质从固相化为液相过程中的一种异常物相外,还具有其他新颖的性质。例如:对电场...
· 薄膜晶体管液晶显示器
架构像素排列之图解寻常的液晶显示器好比计算器的显示面版,其图像元素是由电压直接驱动;当控制一个单元时不会影响到其他单元。当像素数量增加到极大如以百万计时,这种方式就变得不实际,注意到每个像素的红、绿、蓝三色都要有个别的连接线。为了避免这种困境,将像素排成行与列则可将连接线数量减至数以千计。如果一列中的所有像素都由一个正电位驱动,而一行中的所有像素都由一个负电位驱动,则行与列的交叉点像素会有最大的电压而被切换状态。然而此法仍有缺陷,即是同一行或同一列的其他像素虽然受到的电压仅为部分值,但这种部分切换仍会使像素变暗(以不切换为亮的液晶显示器而言)。解决方法是每个像素都添加一个配属于它的晶体管开关,使得每个像素都可被独立控制。晶体管所拥有的低漏电流特征所代表的意义乃是当画面更新之前,施加在像素的电压不会任意丧失。每个像素是个小的电容器,前方有着透明的铟锡氧化物层,后方也有透明层,并有绝缘性的液晶...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信