更多文章






单位圆盘的哈代空间
对0<p{\displaystyle 0
,哈代空间
定义为开单位圆盘上满足下述性质的全纯函数
左侧的数定义为范数∥ ∥ -->f∥ ∥ -->Hp{\displaystyle \|f\|_{H^{p}}}。
若0<p<q{\displaystyle 0
,可证明
。
上半平面的哈代空间
藉凯莱变换,可将单位圆盘的定义翻译到上半平面的情形。此时哈代空间等于上半平面上满足下述性质的全纯函数F{\displaystyle F}
左侧的数定义为范数∥ ∥ -->F∥ ∥ -->Hp{\displaystyle \|F\|_{H^{p}}}。
文献
Cima, Joseph A.; Ross, William T., The Backward Shift on the Hardy Space, American Mathematical Society, 2000, ISBN 0-8218-2083-4
Colwell, Peter, Blaschke Products - Bounded Analytic Functions, Ann Arbor: University of Michigan Press, 1985, ISBN 0-472-10065-3
Duren, P., Theory of Hp{\displaystyle H^{p}}-Spaces, New York: Academic Press, 1970
G.B. Folland,Hardy spaces, (编) Hazewinkel, Michiel,数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
Hardy, G. H., On the mean value of the modulus of an analytic function, Proceedings of the London mathematical society series 2, 1915, 14: 269–277
Hoffman, Kenneth, Banach spaces of analytic functions, New York: Dover Publications, 1988, ISBN 0-486-65785-X
Riesz, F., Über die Randwerte einer analytischen Funktion, Math. Z., 1923, 18: 87–95, doi:10.1007/BF01192397
S.V. Shvedenko,Hardy classes, (编) Hazewinkel, Michiel,数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。