族谱网 头条 人物百科

音频信号处理

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:760
转发:0
评论:0
音讯的来源当物体产生震动时,就会产生声音,举例来说:当用力挥动手掌时,就会产生声音,以及蚊子翅膀快速震动时,所发出的扰人声音。但是,在上述例子中,所听到的声音是来自于空气震动,而不是因为手掌摆动,原因是人耳可以听到的声音频率介于20Hz到20000Hz之间,所以我们可以听到空气振动产生的声音,却听不到手掌摆动产生的声音,因为摆动的频率不够快。音讯的资讯声音讯号是一种力学波,因此在传播过程中是一种类比连续的讯号,然而由于人耳是天然的傅立叶转换器,因此音讯经过人耳后会变成数字信号。在这些讯号中,有三个特征是处理时经常考虑的部分,可以参考下图:音量:从讯号来看,音量代表的是讯号的震幅,讯号振幅越大,所发出的音量也越大。音频:讯号的频率,就是所谓的音频,也就是声音震动的频率。其代表的是音调的高低,频率越高,音调就越高。除此之外,乐器所产生的声音讯号,并非是单一频率的讯号,而是有基频和泛音(倍频)的...

音讯的来源

当物体产生震动时,就会产生声音,举例来说:当用力挥动手掌时,就会产生声音,以及蚊子翅膀快速震动时,所发出的扰人声音。

但是,在上述例子中,所听到的声音是来自于空气震动,而不是因为手掌摆动,

原因是人耳可以听到的声音频率介于20Hz到20000Hz之间,所以我们可以听到空气振动产生的声音,却听不到手掌摆动产生的声音,因为摆动的频率不够快。

音讯的资讯

声音讯号是一种力学波,因此在传播过程中是一种类比连续的讯号,然而由于人耳是天然的傅立叶转换器,因此音讯经过人耳后会变成数字信号。在这些讯号中,有三个特征是处理时经常考虑的部分,可以参考下图:

音量:从讯号来看,音量代表的是讯号的震幅,讯号振幅越大,所发出的音量也越大。

音频:讯号的频率,就是所谓的音频,也就是声音震动的频率。其代表的是音调的高低,频率越高,音调就越高。除此之外,乐器所产生的声音讯号,并非是单一频率的讯号,而是有基频和泛音(倍频)的存在。

音色:每一个人或乐器所发出的音色都不一样,从讯号上来看,音色就是讯号的波形,因此只要利用波形分析,就可以判断出声音的来源,从下图可以看到小提琴跟钢琴的音色差异非常大。

音频信号处理

音讯的三个特征:音量、音频、音色。

音讯的档案

音讯的档案储存可以分成压缩和无压缩两种,常见的无压缩档案格式为*.wav,而压缩档案格式为*.mp3,关于这一部分的详细资料可以参照音讯档案格式。声音档的存取时,主要有三个需要考虑因素:

取样频率:在讯号处理中,取样频率所代表的是声音的品质,取样的频率越高,数字信号的波形越接近类比讯号的波形,因此声音的品质也越好。而在做取样时,必须遵守奈奎斯特频率,简单来说,频率在取样时至少要大于原讯号频率的2倍,才可以得到有意义的讯号,也能还原成原本的讯号。

声音分辨率:存取讯号资料点所用的位元数,即代表其分辨率。所使用的位元数越大,每个资料点的数值就越精确,声音的分辨率也越好。比较16bit与8bit两种存取位元,16bit可以存取到较精确的数值,但是也会花比较大的硬件储存空间。

声道:声道就是声音的来源数,常听到的单声道及双声道,代表的是声音是否有立体感。利用两个喇叭,拨放单声道的声音,左右两个喇叭发出的声音完全相同,因此会感觉声音是来自两个喇叭中间,但若是双声道声音,左右两个喇叭发出的声音会有一定差异,因此会觉得声音听起来有立体感。

举例来说,借由MATLAB输入指令audioinfo(音讯档案名称),可以得到音讯档案的相关资讯如下图:

因为档案格式是*.wav,所以是无压缩(uncompressed)。

声道(NumChannels): 1

取样频率(SampleRate): 44100Hz

声音分辨率(BitsPerSample): 16

音频信号处理

执行MATLAB函数:audioinfo(音讯档案名称)

音讯的处理

由于声音讯号是一段长时间的讯号,因此在处理时必须要分段进行,在处理之前会先开一个范围,选择出想要处理的部分,再针对范围内的部分做处理,声音资讯主要包含:音量、音色和音高,三个部分,也是最常处理的部分。

1.音量控制:音量是一种相对讯号,在讯号中代表得是振幅,其计算方式是将范围内的讯号取平方相加,在以10为底取log,单位是分贝(dB)如下公式:

但是,在对人耳来说,音量是一种主观的感受,根据佛莱彻森曲线(Fletcher-Munson Curve),在不同频率之下,人耳要听到声音的话,对音量有一个最低要求,如下图所示。反过来说,虽然声音讯号的振幅相同,但是因为频率高低不同,对人耳的感受大小也会不同,相同声音强度,耳朵对低频的感受度较差,对3000Hz左右的声音感受度最高,越往高频又会慢慢降低。调整音量最简单的方式就是用加减法,首先把要处理的范围框出来,接着计算出振幅大小,最后再减掉想要减少的振幅强度,就可以降低音量,反之用加法就可以增强区域的音量。

音频信号处理

在不同频率之下,人耳对声音的敏感度会有所不同。

2.音频控制:音频是声音讯号处理的核心部分,最常用的简单处理方式是增频和降频。音频代表得是讯号的音高,中音Do的频率约在262Hz,在音乐中,有C(Do),#C(#Do,♭Re),D(Re),#D(#Re,♭Mi),E(Mi,♭Fa),F(Fa),#F(#Fa,♭Sol),G(Sol),#G(#Sol,♭La),A(La),#A(#La,♭Si),B(Si),12个特定的音阶,每差12个音阶,频率会变为原来的两倍,其频率设定是以440Hz为标准音频,做进一步数学推算,其频率为440乘上2的n/12次方,其中n是上面列出的第几个音阶。音频的处理最常用的是升频和降频,先选出想要处理的区域,接着做升降频的动作,这其中必须要注意奈奎斯特理论,避免讯号失真。

frequency = 2 * 440

3.频率分析:透过离散傅立叶转换(Discrete Fourier Transform),通常简称为DFT,可以将一段声音讯号转换成其各个频率的正弦波分量,方便做更进一步的分析、运算。下图是将频率为440Hz的正弦波讯号,借由MATLAB function: fft,可以得到讯号组成频率的分量,从图上可以看到在440Hz的地方有特别大的值。

音频信号处理

将正弦波的讯号,经由傅立叶转换,可以得到讯号组成的频率。

4.音色:每一组声音讯号的波形都不一样,其物理意义是音色,因此如果改变波形的变化,就可以产生出音色类似的声音,处理波形最简单的方法就是用窗函数(window function),利用既有或自制的窗函数,将讯号做简单的convolution就可以改变讯号的波形,创造出不同的音色。 4.倍频:通常音乐的讯号不是单一频率的讯号,而是由基频,以及其泛音(基频的整数倍,倍频)所组成,因此若自制电子音乐时,必须注意倍频对声音饱和度产生的影响。下图将音乐讯号经过频率分析后,可以看到除了在 f 0 = 330 H z {\displaystyle f_{0}=330Hz} 左右的基频外,在 2 f 0 {\displaystyle 2f_{0}} 、 3 f 0 {\displaystyle 3f_{0}} 的部分也会有较大的分量。

音频信号处理

音乐讯号会由基频、泛音所组成,经过频率分析后,分量在基频倍数的地方有较大的值。

5.端点侦测:端点侦测的目的是使讯号处理的范围更精确,方法很简单,只要设定一个音量阈值,若讯号小于阈值,则将其视为没讯号,但是若噪声过高,则会产生误差。

MATLAB声音信号处理指令

[y, fs] = audioread(档名):y是声音讯号的向量,fs是取样频率。

audioinfo(档名):回传各种声音档案的相关资讯,像是取样频率、通道数量、声音分辨率...等。

sound(y, fs):以fs的频率播放声音讯号y。

wavewrite(y, fs, filename):将y讯号,以取样速率fs,写到filename.wav之中。

Y = fft(y):将时间轴上的讯号y,转换为频率轴上的讯号Y。

参考资料

http://djj.ee.ntu.edu.tw/ADSP7.pdf


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 模拟信号处理
模拟信号处理使用的工具卷积卷积是信号处理的一个基本概念。将输入信号与系统函数卷积,可以得到输出信号。卷积运算由*表示。卷积的定义:时域卷积等价于频域乘积。傅里叶变换傅里叶变换将时域信号转变为频域。并非所有时域信号都能被傅里叶变换转变为频域,需满足条件:傅里叶变换的积分:傅里叶逆变换将频域信号转变为时域:
· 数字信号处理
数字信号处理的域数字信号处理系统在数字信号处理领域,工程师们常常在以下的一些特定域中研究数字信号:时域(一维的信号)、空间域(多维信号)、频域、自相关域和小波域。他们基于有根据的猜测来选择不同的域来研究信号(或者是为了尝试不同的可能性),以找到能最佳表达信号特征的域。从测量仪器得到的采样串行表现为时域和空间域的信号,然后通过离散傅立叶变换产生频域信号,这就是所谓的频谱。自相关被定义为对信号本身在变化的时间和空间坐标上做互相关处理。数字系统更多资料:采样真实世界的信号一般是连续的模拟信号,相应的系统为模拟系统。为了在模拟系统中应用数字信号处理,必须在模拟系统和数字系统之间进行转换。通常将模拟系统的输入数字化,即信号采样,将此数字信号作为数字系统的输入。类似的,在数字信号处理的输出端,将输出的数字信号转换为模拟信号即为模拟系统的输出。对模拟信号的采样必须满足采样定理以避免频谱混叠。也就是说,采...
· 数字信号处理器
数字信号处理器的特点分开的程序存储器和数据存储器(哈佛结构)。用于单指令流多数据流(SIMD)作业的特殊指令集。可进行并行处理,但不支援多任务。用于宿主环境时可作为直接内存存取(DMA)设备运作。从模拟数字转换器(ADC)获得数据,最终输出的是由数字模拟转换器(DAC)转换为模拟信号的数据。数字信号的处理数字信号的处理可由通用微处理器完成。可能的优化为:数据运算指令使用饱和算法,在这种方式中,会产生溢出的运算将累积至寄存器可容纳的最大(或最小)值,而不是按环绕方式(环绕方式是很多通用CPU采取的方式。在环绕方式中,寄存器的数值到达最大值后再加一则会绕回到最小值;而使用饱和算法时则不会发生这种环绕,运算结果仍将保持为最大值)。有些情况下可使用不同的粘滞位运算模式。使用乘积累加(MAC)运算,这会提高各种矩阵运算的效率(例如卷积运算、点积运算、乃至矩阵多项式的求值运算;参看Hornersche...
· 信号
定义在信息论中,信号是一种信息流。我们感兴趣的大部分信号都可表述为时间或位置的函数。任何携带信息的物理量皆可以作为信号。信号本身所携带的信息是我们的目的,从中提取有需要有用的信号,抑制干扰部分是信号处理的目标。连续与离散按照信号时间向量的不同,可以分为:连续时间信号(Continuous-Time)和离散时间信号(Discrete-Time)。连续信号是时间的连续函数,而离散信号是时间的离散函数。模拟与数字所有维度上均连续的信号是模拟信号,所有维度上均离散的信号则是数字信号。数字信号是通过对模拟信号时间、幅度维度上离散化产生的。一些信号的例子运动声音影像画面频率分析见频域。无论对于连续信号还是离散信号,分析信号的频谱都是一种非常有效的方法。例如一个信号通过线性时不变系统,则系统输出频谱即为信号频谱与系统频率响应之积。熵信号的另一重要特性便是熵。相关主题噪声信噪比讯号处理影像处理
· 高级音频编码
扩展名AAC编码的主要扩展名有三种:.aac-使用MPEG-2AudioTransportStream(ADTS,参见MPEG-2)容器,区别于使用MPEG-4容器的MP4/M4A格式,属于传统的AAC编码(FAAC默认的封装,但FAAC亦可输出MPEG-4封装的AAC)。.mp4-使用了MPEG-4Part14(第14部分)的简化版即3GPPMediaRelease6Basic(3gp6,参见3GP)进行封装的AAC编码(NeroAAC编码器仅能输出MPEG-4封装的AAC)。.m4a-为了区别纯音频MP4文件和包含视频的MP4文件而由苹果(Apple)公司使用的扩展名,AppleiTunes对纯音频MP4文件采用了".m4a"命名。M4A的本质和音频MP4相同,故音频MP4文件亦可直接更改扩展名为M4A。概览作为一种高压缩比的音频压缩算法,AAC压缩比通常为18:1,也有数据说为20:...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信