混合熵
参看吉布斯悖论熵
参看
吉布斯悖论
熵
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
——— 没有了 ———
编辑:阿族小谱
文章价值打分
- 有价值
- 一般般
- 没价值
当前文章打 0 分,共有 0 人打分
文章观点支持
0
0
文章很值,打赏犒劳一下作者~
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信
推荐阅读
· 熵
简介熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。在信息论里面,熵是对不确定性的测量。但是在信息世界,熵越高,则能传输越多的信息,熵越低,则意味着传输的信息越少。英语文本数据流的熵比较低,因为英语很容易读懂,也就是说很容易被预测。即便我们不知道下一段英语文字是什么内容,但是我们能很容易地预测,比如,字母e总是比字母z多,或者qu字母组合的可能性总是超过q与任何其它字母的组合。如果未经压缩,一段英文文本的每个字母需要8个比特来编码,但是实际上英文文本的熵大概只有4.7比特。如果压缩是无损的,即通过解压缩可以百分之百地恢复初始的消息内容,那么压缩后的消息携带的信息和未压缩的原始消息是一样的多。而压缩后的消息可以通过较少的比特传递,因此压缩消息的每个比特能携带更多的信息,也就是说压缩信息的熵更加高。熵更高意味着比较难于预测压缩消息携带的信息,原因在于压缩消息里面没有冗余,即每个比特...
· 熵
熵的热力学定义鲁道夫·克劳修斯——最早提出“熵”这个概念的物理学家熵的概念是由德国物理学家克劳修斯于1865年所提出。克氏定义一个热力学系统中熵的增减:在一个可逆过程里,被用在恒温的热的总数(σσ-->Q{\displaystyle\sigmaQ}),并可以公式表示为:克劳修斯对S予以“熵”(希腊语:εντροπια,entropia,德语:Entropie,英语:entropy)一名,希腊语源意为“内向”,亦即“一个系统不受外部干扰时往内部最稳定状态发展的特性”。与熵相反的概念为“反熵”(希腊语:εκτροπια,ektropia,源意“外向性”;德语:Ektropie;英语ectropy)。1923年,德国科学家普朗克来中国讲学用到entropy这个词,胡刚复教授翻译时灵机一动,把“商”字加火旁来意译“entropy”这个字,创造了“熵”字,(音读:商),因为熵是Q除以T(温度)的商数...
· 余熵
历史美国化学家莱纳斯·鲍林是第一个以余熵这一概念来描述水所结成冰块的人,特别是六方晶系的冰。在水状态下,每一个氧原子与两个氢原子结合在一起。但是当水结成冰时则会变成四方结构,每一个氧原子周围会有四个氢原子(因为周围会有相邻的水分子)。氧原子周围的氢原子也有一定范围的自由活动空间,只要每一个氧原子“附近”保持有两个氢原子,那么就仍然保持有其传统的水分子构成H2O。但事实证明,在这类有大量水分子的情况下,氢原子很有可能会遵循一种两进两出的原则(每一个氧原子必须有两个氢原子在其“附近”,另外两个氢原子距其较“远”)。氢原子的这种自由活动只存在于绝对零度下,因此以前也被视为绝无仅有的一种情况。存在有多种这样的匹配情况来满足绝对零度时的无序性,换言之,即满足绝对零度时的熵。水所结成的冰是第一个用来说明余熵概念的例子,然而一般情况下很难提取纯净且毫无缺陷的冰晶来进行研究。因此有大量研究都试图通过其他热...
· 熵力
实例布朗运动布朗运动的熵方法最初是被RM纽曼提出的。.疏水力水珠在疏水性的草表面。熵力的另一个例子是疏水力。在室温下,当它们与溶解物质分子相互作用时,它部分地起源是由水分子的三维网络中熵的损失。
· 等熵过程
原理热力学第二定律的普遍表达式为此处的δδ-->Q{\displaystyle\deltaQ}指的是在一个微元过程中,系统吸收或放出的热量,T{\displaystyleT}代表系统的温度,dS{\displaystyledS}代表该微元过程中,系统熵值的改变,等熵过程中dS=0{\displaystyledS=0},可得到当过程可逆时,上式取等号当过程不可逆时,上式取小于号等熵流实际生活中是无法达到完全的绝热的,但当一段流体在流动过程中没有热量输入,而摩擦和耗散引起的热量损失可以不计时,就会被称为等熵流。参见绝热过程等焓过程多方过程
关于我们
关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。
APP下载
下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信