偏序关系
定义
非严格偏序,自反偏序
给定集合S,“≤”是S上的二元关系,若“≤”满足:
自反性:∀a∈S,有a≤a;
反对称性:∀a,b∈S,a≤b且b≤a,则a=b;
传递性:∀a,b,c∈S,a≤b且b≤c,则a≤c;
则称“≤”是S上的非严格偏序或自反偏序。
严格偏序,反自反偏序
给定集合S,“<”是S上的二元关系,若“<”满足:
反自反性:∀a∈S,有a≮a;
非对称性:∀a,b∈S,a<b ⇒ b≮a;
传递性:∀a,b,c∈S,a<b且b<c,则a<c;
则称“<”是S上的严格偏序或反自反偏序。
严格偏序与有向无环图(dag)有直接的对应关系。一个集合上的严格偏序的关系图就是一个有向无环图。其传递闭包是它自己。
偏序
容易证明以下结论:
给定集合S上的一个(非严格,自反)偏序“≤”,则可自然地诱导出S上的一个(严格,反自反)偏序“
给定集合S上的一个(严格,反自反)偏序“<”,则可自然地诱导出S上的一个(非严格,自反)偏序“≤”,只需如此定义:a ≤ b,如果 a < b 或 a = b。
给定集合S上的一个(非严格,自反)偏序“≤”,其逆关系“≥”也是S上的一个(非严格,自反)偏序;
给定集合S上的一个(严格,反自反)偏序“逆关系“>”也是S上的一个(严格,反自反)偏序;
由上述可知,只要定义了“≤”、“”中的任何一个,其余三个关系的定义可以自然诱导而出,这四种关系实际上可以看成一体。故此在不严格区分的情况下,只需定义其一即可(通常是“≤”),称之为集合S上的偏序关系。(“偏序关系”通常被用来称呼非严格偏序关系。)
(非严格,自反)偏序和(严格,反自反)偏序之间的对应关系不同于在(非严格)弱序和严格弱序直接的对应(逆关系的补集)。只有对于全序这些对应才是相同的。
偏序集与序对偶
若集合S上定义了一个偏序,则S称为偏序集(poset);若将其上的偏序关系改为其逆关系,得到的新偏序集S"称为S的序对偶。
虽然通常术语“有序集”用来称呼全序集,但当上下文中不涉及其他序关系时,“有序集”也可用于称呼偏序集。
完全性
例子
下面是一些主要的例子:
自然数的集合配备了它的自然次序(小于等于关系)。这个偏序是全序。
整数的集合配备了它的自然次序。这个偏序是全序。
自然数的集合的有限子集{1, 2, ..., n}。这个偏序是全序。
自然数的集合配备了整除关系。
给定集合的子集的集合(它的幂集)按包含排序。
向量空间的子空间的集合按包含来排序。
一般的说偏序集合的两个元素x和y可以处于四个相互排斥的关联中任何一个:要么x y,要么x和y是“不可比较”的(三个都不是)。全序集合是用规则排除第四种可能的集合:所有元素对都是可比较三分法且声称三分法成立。自有理数整实数有理数和实数都关于它们代数(有符号)大小是全序的,而复数不是。这不是说复数不能全序排序;比如我们可以按词典次序排序它们,通过x+iy < u+iv当且仅当x < u或(x = u且y < v),但是这种排序没有合理的大小意义因为它使得1大于100i。按绝对大小排序它们产生在其中所有对都是可比较的预序,但这不是偏序因为1和i有相同的绝对大小但却不相等,违反了反对称性。
线性扩展
全序T是偏序P的线性扩展,只要x ≤ y在P中成立则x ≤ y在T中也成立。在计算机科学中,找到偏序的线性扩展的算法叫做拓扑排序。
参见
二元关系
全序关系
预序关系
引用
J. V. Deshpande, On Continuity of a Partial Order, Proceedings of the American Mathematical Society, Vol. 19, No. 2, 1968, pp. 383-386
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值