先进超导托卡马克实验装置
项目目标
我国是国际热核聚变实验反应堆(ITER)联盟的成员之一,并且先进超导托卡马克实验装置(EAST)将是拟议的ITER项目技术的一个测试平台。
建成一个具有非圆小截面全超导托卡马克。在其上实现高参数、长脉冲和稳态运行;在以上条件下开发先进运行模式,并进行热流平衡和粒子流平衡控制的实验研究。
EAST将测试:
铌钛极向场超导磁体,使其成为第一个带有环向场和极向场超导磁体的托卡马克装置;
非感应电流驱动;
脉冲高达1000秒与0.5MA的等离子电流;
通过实时诊断控制等离子体不稳定性的方案(“稳态托卡马克等离子体的先进诊断技术”);
偏滤器和面对等离子体的组件的材料;
操作在 β N = 2,限制因子 H 89 > 2;
项目意义
EAST将使我国核聚变研究计入国际先进水平,为未来先进核聚变反应堆的工程技术核物理基础、为人类能在21世纪后半叶实际使用聚变能做出贡献。
EAST是我国核聚变研究的一个重要里程碑,并将为未来的国际热核聚变实验反应堆(ITER)提供技术试验温床。
项目内容
根据设计,EAST项目的主要技术特点和指标是:16个大型“D”字形超导纵场磁体将产生纵场强度(BT)3.5特斯拉;12个大型极向场超导磁体可以提供磁通量变化量ΔФ≥10伏特/秒。通过这些极向场超导磁体,EAST能产生超过100万安培的等离子体电流、持续达1000秒、在高功率加热下温度将超过一亿摄氏度。
EAST主体实验装置结构
EAST实验装置的主机部分高达11米,直径达8米,重约400吨。它们主要由超高真空室、纵场系统、极向场系统、内外冷屏、外真空杜瓦及支撑系统等六大部件组成。
另外,EAST的实验运行需要大型超高真空、大型超导体测试、大规模低温液氦制冷、大型高功率脉冲电源及其回路、大型计算机控制和数据采集处理、兆瓦级低杂波电流驱动和射频波加热以及多种先进诊断测量等系统支持。
历史
我国为了在近堆芯的高参数条件下研究等离子体的稳态和先进运行,深入探索实现聚变发电的物理及工程问题,中科院等离子体物理研究所在成功建设我国首个超导托卡马克HT-7的基础上,提出了“HT-7U全超导非圆截面托卡马克装置建设”计划。为使国内外研究人员等便于记忆、易于发音同时又明确其科学含义,该项目的名称在2003年10月正式由HT-7U改为“EAST”。
该装置计划于1996年被提出,1998年国家计委正式立项。其作为国家“九五”大科学工程的开工报告于2000年10月获中华人民共和国国家发展和改革委员会正式批准。根据2003年的进度表, 主要建筑物与设施于2003年开始建造,2003年至2005年组装托卡马克。主机和分系统的研制安装工作于2005年底基本完成,2006年2月1日到3月17日进行首次工程调试。调试中,最受关注的低温调试和磁体通电测试均获得圆满的成功。该装置至今投资约3亿人民币。
2006年9月28日,该装置首次成功放电。这是全球首个投入运行的全超导非圆截面核聚变实验装置,标志着我国科学家在“盗取天火”的征程中又迈了一大步。2007年二月的实验中,EAST产生了持续了近3秒的200千安培的等离子放电。2007年3月1日,顺利通过了国家发改委组织的国家竣工验收。
2016年1月28日凌晨零点26分,我国科学院合肥物质科学研究院全超导托卡马克核聚变实验装置EAST成功实现了电子温度超过5千万度、持续时间达102秒的超高温长脉冲等离子体放电,这是国际托卡马克实验装置上电子温度达到5000万度持续时间最长的等离子体放电。该成果在未来聚变堆研究中具有里程碑意义,标志着我国在稳态磁约束聚变研究方面继续走在国际前列。目前,EAST已成为国际上稳态磁约束聚变研究的重要实验平台,其研究成果将为未来国际热核聚变实验堆ITER实现稳态高约束放电提供科学和工程实验支持,并将继续下一代聚变装置—聚变工程实验堆前期预研奠定重要的科学基础。
2016年11月2日消息,我国科学院合肥物质科学研究院等离子体所承担的国家大科学工程“人造太阳”实验装置EAST在第11轮物理实验中再获重大突破,获得超过60秒的稳态高约束模等离子体放电。EAST因此成为世界首个实现稳态高约束模运行持续时间达到分钟量级的托卡马克核聚变实验装置。
设计特点
全超导磁体
主动冷却结构
非圆形截面
EAST托卡马克参数
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值