族谱网 头条 人物百科

退火

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:537
转发:0
评论:0
热力学上的退火金属在冷加工时,被施加的能量大部分会以热能的方式消耗掉,然而有少部分以应变能的形式残留于金属中,并造成金属中出现大量的差排。另外,冷加工后,金属塑性变形所产生的点缺陷同样也是产生应变能的来源。在热力学中,塑性变形的金属和退火的金属,两者的吉布斯能差大约等于储存的应变能。虽然塑性变形会增加金属的熵,但增加的效应远小于应变所增加的内能。因此可简成因为塑性变形的金属自由能较大,故它会自发(Spontaneous)回复平衡状态。然而由于金属内部结构复杂,其不可能依靠简单的反应回复成退火的状态,它需要许多不同的反应来回复。释放应变能的过程,称为应力释放(stressrelief),这段过程为热力学上的自发程序,但在室温中反应速率相当缓慢,因此退火处理中的的加热措施,就是利用高温来提高这些反应的速率,从而加速金属释放储存能。受过冷加工的金属,它可以透过许多反应途径释放应变能,其中大部分是

热力学上的退火

金属在冷加工时,被施加的能量大部分会以热能的方式消耗掉,然而有少部分以应变能的形式残留于金属中,并造成金属现大量的差排。另外,冷加工后,金属塑性变形所产生的点缺陷同样也是产生应变能的来源。

在热力学中,塑性变形的金属和退火的金属,两者的吉布斯能差大约等于储存的应变能。虽然塑性变形会增加金属的熵,但增加的效应远小于应变所增加的内能。因此

可简成

因为塑性变形的金属自由能较大,故它会自发(Spontaneous)回复平衡状态。然而由于金属内部结构复杂,其不可能依靠简单的反应回复成退火的状态,它需要许多不同的反应来回复。释放应变能的过程,称为应力释放(stress relief),这段过程为热力学上的自发程序,但在室温中反应速率相当缓慢,因此退火处理中的的加热措施,就是利用高温来提高这些反应的速率,从而加速金属释放储存能。

受过冷加工的金属,它可以透过许多反应途径释放应变能,其中大部分是透过消除金属内的晶格空位浓度梯度来实现。晶格空位的产生遵守阿瑞尼士方程式,而空位的移动和扩散须遵守菲克扩散定律(Fick"s law of diffusion)。

透过消除晶体结构的空位和差排,可让原子置于合适的晶格位置,新生成的晶粒改善了金属的机械性质,所以退火不仅可以消除内部应力,还可以改善机械性质,如硬度、延展性等。

退火步骤

退火过程中间会有三个阶段。

第一阶段是回复(recovery)。在回复的过程中,晶体内部缺陷(例如晶格空位)会移动回复到正常晶格位置,同时内部应力场也会跟着消失。在回复阶段,先前的冷加工过的金属其电、热传导等性质将回复成原来状态。

第二阶段是再结晶(recrystallization)。再结晶过程中,新的晶粒成型并取代原本因内在应力而变形的晶粒。

再结晶完成时,晶粒成长(grain growth)就会开始。晶粒成长过程中,小的晶粒会与大的晶粒合并,减少材料内部晶界的数目。晶粒成长的程度会严重影响到材料的机械性质。

设置和设备

传统上,退火过程会在大型的退火炉中处理,退火炉内部空间相当宽敞,足够让高温气体在内部循环并可让工件暴露在高温气体中。对于要进行高容量的退火过程,经常使用输送式燃气燃烧炉。而对于大型工件或高数量零件则适用台车式炉,以利零件输送进出。当退火过程已经顺利完成,有时工件会从炉中取出,来控制零件的冷却过程,然而有时并不将材料和合金零件从炉中取出,使工件仍留在炉中,同时控制其冷却过程。通常,当工件从炉中取出后会用淬火急速冷却处理,典型的淬火介质为空气,水,油等。

保护气体

退火中的高温会造成金属表面的氧化及剥落,若要防止剥落,可以在保护气体下进行退火,例如吸热型气体(一氧化碳、氢气及氮气的混合物),退火也可以在由氮气及氢气混合而成的合成气体中进行。

μ合金的磁性质会在氢气环境下进行的退火中产生。

特别的退火程序

正常化

正常化(Normalizing),是一种退火程序,借着加热来细化晶粒,释放应力。

这过程通常受限用于硬化钢,受过塑性变型的钢,其晶粒呈现不规则的形状,且晶粒相对大小不一,正常化即是为了产生细小、并均匀化的晶粒,从而改善它的延展性和韧性。正常化是借由把钢加热至上临界温度之上,即奥氏体化温度之上,之后保持此温度一小段时间,让它在空气中冷却。在足够的时间之后,使铁碳合金完全奥氏体化(austenitizing)。正常化之后,可进一步进行其他热处理程序。

制程退火

制程退火(Process annealing)或称“中间退火”(intermediate annealing),或“临界点下退火”(subcritical annealing),是一种恢复工件部分延展性的热处理手段,工件可以进一步被处理而不至于断裂。

在工件进行塑造、精制物件成形的制程时,如锻造(forging)、轧制(rolling)、抽制(drawing)、挤制(extrusion)、旋压(spinning)、锻头(heading),延展性相当重要。将材料加热至奥氏体化下的温度,并维持长时间,充分地释放金属的应力。最后让工件缓慢冷却至室温,之后便可再进行额外的冷加工。制程退火的温度范围在260℃到760℃之间,主要视合金的成分而定。

在制程退火中,若想要特定的细晶显微结构,可在晶粒成长之前,将热处理中止。

完全退火

退火

完全退火温度范围

完全退火(full anneal),可以获得接近平衡状态组织的退火程序,形成完全全新的均匀排列结构,且有良好的动力学性值,适用于低碳或中碳钢。

要执行完全退火,需将合金加热到退火点,约在奥氏体化温度之上15℃到40℃左右,并有足够的时间让材料充分奥氏体化,形成奥氏体或奥氏体-渗碳体(austenite-cementite)的晶粒结构,之后让材料缓慢冷却,从而可达到显微结构的平衡状态。材料可在空气中冷却或者使用材料炉冷(furnace cool),视情况而定。

完全退火的过程细节决于内部金属和精密合金的种类。完全退火后,金属会具有良好的延展性和非常好的拉伸比。完全退火程序相当耗时,优点是可获得具有小晶粒和均匀的显微晶粒结构。

半导体的退火

在半导体工业中,硅晶圆需要进行退火。因半导体材料中掺杂了杂质如硼、磷或砷等,会产生大量空位,使原子排列混乱,导致半导体材料性质剧变,因此需要退火来恢复晶体的结构和消除缺陷,也有利于间隙式位置的杂质原子进入置换式位置。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信