三面体
常见的三面体由于三维空间中的单纯形是四面体,面数少于4的多面体都只能成为退化多面体,因此三面体都不能真正具有体积。在球面镶嵌中,常见的三面体是三面形。亦有一种正抽象多面体是三面体,其为半立方体。三面形尽管面为平面的三面体在三维空间不能存在,但在球面几何学中,三面体可以以球面镶嵌的方式存在,最简单的例子是三面形。一个正三面形,表示三个镶嵌在球体上的球弓形,施莱夫利符号中利用{2,3}来表示,其对偶多面体是三角形二面体。性质三面形是一个退化的多面体,其无法拥有体积。三面形由3个二角形组成,每个顶点都是3个二角形的公共顶点。正三面形的每个面都是正二角形,且每个顶点都是3个正二角形的公共顶点,因此正三面形也可以视为一种正多面体,但是因为其已退化,因此不会与柏拉图立体一同讨论。三面形具有D3h,[2,3],(*223)的对称性和D3,[2,3]的旋转对称性,且阶数为12,在考克斯特符号中用表示。圆柱...
常见的三面体
由于三维空间中的单纯形是四面体,面数少于4的多面体都只能成为退化多面体 ,因此三面体都不能真正具有体积。在球面镶嵌中,常见的三面体是三面形。亦有一种正抽象多面体是三面体,其为半立方体。
三面形
尽管面为平面的 三面体 在三维空间不能存在,但在球面几何学中,三面体可以以球面镶嵌的方式存在,最简单的例子是三面形。一个正三面形,表示三个镶嵌在球体上的球弓形,施莱夫利符号中利用{2,3}来表示,其对偶多面体是三角形二面体。
性质
三面形是一个退化的多面体,其无法拥有体积。三面形由3个二角形组成,每个顶点都是3个二角形的公共顶点。正三面形的每个面都是正二角形,且每个顶点都是3个正二角形的公共顶点,因此正三面形也可以视为一种正多面体,但是因为其已退化,因此不会与柏拉图立体一同讨论。
三面形具有 D 3h , [2,3], (*223) 的对称性和 D 3 , [2,3] 的旋转对称性,且阶数为12,在考克斯特符号中用 表示。
圆柱
圆柱也能算是一种非严格的三面体,因为它可以看做是只有三个面的几何体,由一曲面(侧面)和两个圆形平面(底面)所组成。
相关形状
三胞体
三胞体是指有三个胞或维面的多胞体。其为三面体在四维或更高维度的类比,但由于四维空间的单纯形是五胞体,任何面数边树或顶点数小于单纯形的图形都只能退化或成为球面镶嵌,即无法具有非零的体积。
参见
三角形
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
——— 没有了 ———
编辑:阿族小谱
文章价值打分
- 有价值
- 一般般
- 没价值
当前文章打 0 分,共有 0 人打分
文章观点支持
0
0
文章很值,打赏犒劳一下作者~
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信
推荐阅读
关于我们
关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。
APP下载
下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信