指数增长
基本公式
变量x指数地依赖时间t,若
其中常数a是x的初始值,
并且,常数b是正的增长率,τ为x增长b倍所需时间:
若τ > 0且b > 1,则x为指数增长。若τ 1,或τ > 指数衰减< b < 1,则x为指数衰减。
微分方程
指数函数x(t)=aekt{\displaystyle \scriptstyle x(t)=ae^{kt}}满足线性微分方程:
则称t时刻x的增长率与函数值x(t)成正比,且初值为:
对于a>0{\displaystyle \scriptstyle a>0}微分方程可以使用分离变量法求解:
考虑到给定初值:
这种解法对于a≤ ≤ -->0{\displaystyle \scriptstyle a\leq 0}同样适用。
对于该增长模型的非线性变体,请参考Logistic函数。
相关条目
摩尔定律
文内注释
资料引用
Meadows, Donella H., Dennis L. Meadows, Jørgen Randers, and William W. Behrens III. (1972) The Limits to Growth. New York: University Books. ISBN 0-87663-165-0
Porritt, J. Capitalism as if the world matters, Earthscan 2005. ISBN 1-84407-192-8
Thomson, David G. Blueprint to a Billion: 7 Essentials to Achieve Exponential Growth, Wiley Dec 2005, ISBN 0-471-74747-5
Tsirel, S. V. 2004.On the Possible Reasons for the Hyperexponential Growth of the Earth Population. Mathematical Modeling of Social and Economic Dynamics / Ed. by M. G. Dmitriev and A. P. Petrov, pp. 367–9. Moscow: Russian State Social University, 2004.
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值