族谱网 头条 人物百科

量子密钥分发

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:705
转发:0
评论:0
量子密钥交换量子通信中,消息编码为量子状态,或称量子比特,与此相对,经典通信中,消息编码为比特。通常,光子被用来制备量子状态。量子密码学利用量子状态的特性来确保安全性。量子密钥分发有不同的实现方法,但根据所利用量子状态特性的不同,可以分为几类。基于测量:与经典物理不同,测量是量子力学不可分区的组成部分。一般来讲,测量一个未知的量子状态会以某种形式改变该量子的状态。这被称为量子的不确定性,它的一些基本结论有维尔纳·海森堡的不确定性原理,信息干扰理论和不可克隆原理。这些性质可以被利用来检测通信过程中的任何窃听(窃听必然需要测量),更重要的是,能够计算被截获消息的数量。基于纠缠态:两个或更多的量子状态能够创建某种联系,使得他们无论距离多远依然要被看做是一个整体的量子状态,而不是独立的个体。这被称为量子纠缠。他们之间的联系是,比如,对其中一个量子的测量会影响其他量子。如果纠缠的量子对被通信的双方分...

量子密钥交换

量子通信中,消息编码为量子状态,或称量子比特,与此相对,经典通信中,消息编码为比特。通常,光子被用来制备量子状态。量子密码学利用量子状态的特性来确保安全性。量子密钥分发有不同的实现方法,但根据所利用量子状态特性的不同,可以分为几类。

基于测量:与经典物理不同,测量是量子力学不可分区的组成部分。一般来讲,测量一个未知的量子状态会以某种形式改变该量子的状态。这被称为量子的不确定性,它的一些基本结论有维尔纳·海森堡的不确定性原理,信息干扰理论和不可克隆原理。这些性质可以被利用来检测通信过程中的任何窃听(窃听必然需要测量),更重要的是,能够计算被截获消息的数量。

基于纠缠态:两个或更多的量子状态能够创建某种联系,使得他们无论距离多远依然要被看做是一个整体的量子状态,而不是独立的个体。这被称为量子纠缠。他们之间的联系是,比如,对其中一个量子的测量会影响其他量子。如果纠缠的量子对被通信的双方分别持有,任何对消息的拦截会改变整个系统,使第三方的存在(以及他截获消息的数量)被检测到。

协议

BB84协议

查理斯·贝内特(Charles Bennett)与吉勒·布拉萨(Gilles Brassard)于1984年发表的论文中提到的量子密码分发协议,后来被称为BB84协议 。BB84协议是最早描述如何利用光子的偏振态来传输消息的。发送者(通常称为Alice)和接收者(通常称为Bob)用量子信道来传输量子态。如果用光子作为量子态载体,对应的量子信道可以是光纤。另外他们还需要一条公共经典信道,比如无线电或因特网。公共信道的安全性不需考虑,BB84协议在设计时已考虑到了两种信道都被第三方(通常称为Eve)窃听的可能。

这个协议的安全性还基于量子力学的一个性质:非正交的状态间无法通过测量被彻底的分辨。BB84协议利用两对状态,分别是光子偏振的两个直线基"+":水平偏振(0°)记作|→>,垂直偏振(90°)记作|↑>;和光子偏振的两个对角基"×":45°偏振记作|↗>,和135°偏振记作|↘>。这两对状态互相不正交,无法被彻底的分辨。比如选择基"+"来测量|↑>,会以100%的概率得到|↑>。但选择基"+"来测量|↗>,结果是随机的,会以50%的概率得到|→>,或以50%的概率得到|↑>,而原始状态的消息丢失了。也就是说,当测量后得到状态|↑>,我们不能确定原本的状态是|↑>还是|↗>,这两个不正交的状态无法被彻底分辨。

BB84协议的第一步是量子传输。Alice随机产生一个比特(0或1),再随机选择一个基("+"或"×"),来制备量子状态。如左侧的表格所示,选择基"+"时把比特0制备成|↑>,把比特1制备成|→>;选择基"×"时,把比特0制备成|↗>,把比特1制备成|↘>。光子的偏振态被制备好之后,Alice把这个光子通过量子信道传送给Bob。之后重复这个过程多次。

Bob并不知道Alice制备量子状态时选择了哪种基,他可以随机的选择基("+"或"×")来测量接收到的量子状态。Bob测量他接受到的每个光子,记录所选的基和测量结果。Bob测量过所有光子后,他与Alice通过公共经典信道联系。Alice公布制备每个光子时所选择的基。Alice和Bob对比他们所选择的基,舍弃那些双方选择了不同的基的比特(一半左右),剩下的比特还原为他们共有的密钥。

Alice和Bob可以拿出他们密钥的一部分,然后相互对比来检查是否有人窃听。如果有第三方窃听(Eve,来自英文"eavesdropper"),他为了获得光子偏振消息而作的测量,会导致对比密钥时发现错误。如果Eve选择了与Alice相同的基去测量,则不会影响Bob的测量结果,Alice和Bob对比密钥的一部分时便不会发现有Eve的存在。但Eve仍有50%的概率会选择与Alice不同的基去测量光子,这会使光子偏振态改变,此时Bob再测量这个光子又有50%的概率得到与Alice不同的结果,从而发现有窃听者Eve的存在,Eve引入的错误的概率是25%。当所对比的密钥部分,超过p个比特出错,则这个密码被舍弃并重新传递一次,重传可选择别的量子信道。p的取值依据是,如果Eve获取的比特数少于p,则可以用隐私放大(privacy amplification)的方法减少Eve所知道消息,同时密钥的长度也被缩短了。

Alice选择基"+"和"×"来测量,之后告诉Bob她的测量结果。Bob可以通过Alice的结果推断出自己的光子目前处于什么状态,从而达到从Alice处接收到一个量子状态的效果。

B92协议

贝内特在1992发表的论文中描述的量子密码分发协议,被称作B92协议。B92协议中只使用两种量子状态。Alice发送状态|↑>和|↗>。Bob接受状态后选择基"+"或"×"测量。Bob测量得到的结果如果是|→>,可以肯定Alice发送的状态是|↗>,得到结果|↖>可以肯定接受到的状态是|↑>。但如果Bob的测量结果是|↑>或|↗>,则不能肯定接收到的状态是什么。

之后Bob告诉Alice他对哪些状态得到了确定的结果,哪些状态他不能肯定,而不告诉Alice他选择了什么样的基测量。而后用那些得到了确定结果的基来编码,把"+"编为"0",把"×"编为"1",并把这串比特作为密钥。

这个协议有个弱点,只有无损耗的信道才能保证这个协议的安全性。否则,Eve可以把那些无法得到确定结果的状态截获然后重新制备可以得到确定结果的状态再发出去。

E91协议

阿图尔·艾克特(Artur Eckert)于1991年发表的E91协议应用了量子纠缠科技。在这方法里,Alice和Bob分别接收到EPR对中的一个:

|Ψ> = 1 2 ( | 01 ⟩ ⟩ --> − − --> | 10 ⟩ ⟩ --> ) {\displaystyle {1 \over {\sqrt {2}}}{\bigg (}|01\rangle -|10\rangle {\bigg )}} .

之后双方都大量的随机选择基去测量,之后用贝尔不等式验证测量结果,来判断是否有人窃听。

信息协调与隐私增强

密钥分发完成之后的要做两个步骤是信息协调与隐私增强。

信息协调(Information Reconciliation):是密钥纠错(Error Correction)的一种方式,可保证Alice和Bob共同拥有的密钥的一致性。这个过程在公共信道中完成,由于可能被Eve窃听,所以要保证关于密钥本身的信息公布的越少越好。由信道噪声或第三方窃听而导致的密钥出错的部分会,信息协调后的密钥将更短。

隐私增强(Privacy Amplification):是减少或去除Eve窃听到的部分密钥信息的一种方法。这部分密钥信息可能是在传输密钥时被窃听的,也可能是后来通过公共信道做信息协调时被获取的。隐私增强利用Alice和Bob手中的密钥,生成一个新的、更短的密钥,这样Eve关于这个新密钥便知之甚少了。

参见

量子通信


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 科普:量子和量子纠缠分发
中国科学家在全球首次实现千公里级的量子纠缠分发,相关论文成为新一期美国《科学》杂志的封面文章。这项被誉为“里程碑式”的成果涉及一系列名词,包括量子、量子纠缠、纠缠光子、纠缠分发、贝尔不等式等。量子:物理学中常用到量子概念,它是构成物质的基本单元,是能量的最基本携带者,不可再分割。比如,光子是光能量的最小单元,不存在“半个光子”。量子这个词来自拉丁语quantus,意为“有多少”,代表“相当数量的某物质”。普朗克在1900年首次提出量子概念,经爱因斯坦、玻尔、海森堡、薛定谔、玻恩等科学巨擘不断完善,量子力学理论在20世纪前半期初步成形,目前还在不断发展中。量子纠缠:这是一种奇怪的量子力学现象,处于纠缠态的两个量子不论相距多远都存在一种关联,其中一个量子状态发生改变(比如人们对其进行观测),另一个的状态会瞬时发生相应改变。这种“心灵感应”似的神秘关联被称为量子非定域性,爱因斯坦称其为“鬼魅般的...
· 对称密钥加密
参见密码学经典密码DES(资料加密标准)3DESAES(高阶加密标准)Blowfish(密码学)Skipjack加密
· 公开密钥认证
外部链接RFC5280
· 公开密钥加密
与对称密码学的比较与对称密钥加密相比,公钥加密无需共享的通用密钥,解密的私钥不发往任何用户。即使公钥在网上被截获,如果没有与其匹配的私钥,也无法解密,所截获的公钥是没有任何用处的。但公钥加密只能加密少量的数据,因此,一个完整的密码体系,往往通过公钥加密来创建私有秘钥,然后用私有秘钥通过对称密码学加密大量数据。公钥加密的另一个功能——数字签名,则是对称密钥加密无法实现的。过程假设两个用户A向B发送信息。B的公钥为c{\displaystylec},对应私钥(也是属于B的)为d{\displaystyled},明文为x{\displaystylex}.A用公钥对明文进行加密形成密文c(x){\displaystylec(x)},然后传输密文;B收到密文,用私钥对密文进行解密d(c(x)){\displaystyled(c(x))},得到要通信的明文x{\displaystylex}。B向A发送...
· 量子
历史量子物理是研究量子化的物理分支,在1900年根据热辐射理论延伸建立量子理论。由于马克斯·普朗克(M.Planck)试图解决黑体辐射问题,所以他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。当时德国物理界聚焦于黑体辐射问题的研究。马克斯·普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、Avogadro-Loschmidt数的数值、一个分子摩尔(mole)的数值及基本电荷。其数值比以前的更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。相关方程黑体辐射量子方程黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。当物体被加热,它以电磁波的形式散发红外线辐射。物体...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信