贝尔曼-福特算法
算法
在这个图中,假设A是起点,并且边以最坏的顺序处理,从右到左,需要|V|−1步或4次计算路径长度。相反地,若边以最优顺序处理,从左到右,算法只需要在一次遍历内完成。
贝尔曼-福特算法与迪科斯彻算法类似,都以松弛操作为基础,即估计的最短路径值渐渐地被更加准确的值替代,直至得到最优解。在两个算法中,计算时每个边之间的估计距离值都比真实值大,并且被新找到路径的最小长度替代。 然而,迪科斯彻算法以贪心法选取未被处理的具有最小权值的节点,然后对其的出边进行松弛操作;而贝尔曼-福特算法简单地对所有边进行松弛操作,共| V | − 1次,其中 | V |是图的点的数量。在重复地计算中,已计算得到正确的距离的边的数量不断增加,直到所有边都计算得到了正确的路径。这样的策略使得贝尔曼-福特算法比迪科斯彻算法适用于更多种类的输入。
贝尔曼-福特算法的最多运行O(| V |·| E |)次,| V |和| E |分别是节点和边的数量)。
伪代码表示
原理
松弛
每次松弛操作实际上是对相邻节点的访问,第 n {\displaystyle n} 次松弛操作保证了所有深度为n的路径最短。由于图的最短路径最长不会经过超过 V − − --> 1 {\displaystyle V-1} 条边,所以可知贝尔曼-福特算法所得为最短路径。
负边权操作
与迪科斯彻算法不同的是,迪科斯彻算法的基本操作“拓展”是在深度上寻路,而“松弛”操作则是在广度上寻路,这就确定了贝尔曼-福特算法可以对负边进行操作而不会影响结果。
负权环判定
因为负权环可以无限制的降低总花费,所以如果发现第 n {\displaystyle n} 次操作仍可降低花销,就一定存在负权环。
优化
循环的提前跳出
在实际操作中,贝尔曼-福特算法经常会在未达到V-1次前就出解,V-1其实是最大值。于是可以在循环中设置判定,在某次循环不再进行松弛时,直接退出循环,进行负权环判定。
队列优化
求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm。 SPFA算法是西南交通大学段凡丁于1994年发表的。 松弛操作必定只会发生在最短路径前导节点松弛成功过的节点上,用一个队列记录松弛过的节点,可以避免了冗余计算。复杂度可以降低到O(kE),k是个比较小的系数(并且在绝大多数的图中,k<=2,然而在一些精心构造的图中可能会上升到很高)
Begininitialize-single-source(G,s);initialize-queue(Q);enqueue(Q,s);whilenotempty(Q)dobeginu:=dequeue(Q);foreachv∈adj[u]dobegintmp:=d[v];relax(u,v);if(tmpd[v])and(notvinQ)thenenqueue(Q,v);end;end;End;
样例
例:V={v1,v2,v3,v4} E={(v1,v2),(v1,v3),(v2,v4),(v4,v3)} weight(v1,v2)=-1 weight(v1,v3)=3 weight(v2,v4)=3 weight(v4,v3)=-1
运行如表: D:Dist[v],P:Pred[v]
参考文献
^
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值