族谱网 头条 人物百科

完备空间

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:842
转发:0
评论:0
例子有理数空间不是完备的,因为2{displaystyle{sqrt{2}}}的有限位小数表示是一个柯西序列,但是其极限2{displaystyle{sqrt{2}}}不在有理数空间内。实数空

例子

有理数空间不是完备的,因为2{\displaystyle {\sqrt {2}}}的有限位小数表示是一个柯西序列,但是其极限2{\displaystyle {\sqrt {2}}}不在有理数空间内。

实数空间是完备的

开区间(0,1)不是完备的。序列(1/2, 1/3, 1/4, 1/5, ...)是柯西序列但其不收敛于(0, 1)中任何的点。

令S为任一集合,S为S中的所有序列。如下定义S上任意两个序列(xn)和(yn)的距离:如果存在某个最小的N,使xN≠ ≠ -->yN{\displaystyle x_{N}\neq y_{N}},那么定义距离为1/N;否则(所有的对应项都相等)距离为0。按此方式定义的度量空间是完备的。同胚间同胚于离散空间S的可数个副本的积。

直观理解

直观上讲,一个空间完备就是指“没有孔”且“不缺皮”,两者都是某种“不缺点”。没有孔是指内部不缺点,不缺皮是指边界上不缺点。从这一点上讲,一个空间完备同一个集合的闭包是类似的。这一类似还体现在以下定理中:完备空间的闭子集是完备的。

相关定理

任一紧致度量空间都是完备的。实际上,一个度量空间是紧致的当且仅当该空间是完备且完全有界的。

完备空间的任一子空间是完备的当且仅当它是一个闭子集。

若X为一集合,M是一个完备度量空间,则所有从X映射到M的有界函数f的集合B(X, M)是一个完备度量空间,其中集合B(X, M)中的距离定义为:

若X为一拓扑空间,M是一个完备度量空间,则所有从X映射到M的连续有界函数f的集合Cb(X,M)是B(X, M)(按上一条目的定义)中的闭子集,因而也是完备的。

贝尔纲定理:任一完备度量空间为一贝尔空间。就是说,该空间的可数个无处稠密子集的并集无内点。

完备化

定义

对任一度量空间M,我们可以构造相应的完备度量空间M" (或者表示为M¯ ¯ -->{\displaystyle {\bar {M}}}),使得原度量空间成为新的完备度量空间的稠密子空间。M" 具备以下普适性质:若N为任一完备度量空间,f为任一从M到N连续函数续函数,则存在唯一的从M" 到N的一致连续函数f" 使得该函数为f的扩展。新构造的完备度量空间M" 在等距同构意义下由该性质所唯一决定,称为M的完备化空间。

以上定义是基于M是M"的稠密子空间的概念。我们还可以将完备化空间定义为包含M的最小完备度量空间。可以证明,这样定义的完备化空间存在,唯一(在等距同构意义下),且与上述定义等价。

对于交换环及于其上的模,同样可以定义相对于一个理想的完备性及完备化。详见条目完备化 (环论)。

构造

类似于从有理数域出发定义无理数的方法,我们可以通过柯西序列给原空间添加元素使其完备。

对M中的任意两个柯西序列x=(xn)和y=(yn),我们可以定义它们间的距离: d(x,y) = limn d(xn,yn)(实数域完备所以该极限存在)。按此方式定义的度量还只是伪度量,这是因为不同的柯西序列均可收敛到0。但我们可以象很多情况中所做的一样(比如从L到Lp{\displaystyle {\mathcal {L}}^{p}}),将新的度量空间定义为所有柯西序列的集合上的等价类的集合,其中等价类是基于距离为0的关系(易于验证该关系是等价关系)。这样,令ξx = {y是M上的柯西序列:yn→ → -->x{\displaystyle y_{n}\rightarrow x}},M" ={ξx:x ∈ M},原空间M就以x→ → -->{\displaystyle \rightarrow }ξx的映射方式嵌入到新的完备度量空间M" 中。易于验证,M等距同构于M" 的稠密子空间。

康托法构造实数是该完备化方法的一个特例:实数域是有理数域作为以通常的差的绝对值为距离的度量空间的完备化空间。

性质

康托尔的实数建构是上述构造的特例;此时实数集可表为有理数集对绝对值的完备化。倘若在有理数集上另取其它的绝对值,得到的完备空间则为p进数。

若将上述流程施于赋范向量空间,可得到一个巴拿赫空间,原空间是其中的稠密子空间。若施于一个内积空间,得到的则是希尔伯特空间,原空间依然是其稠密子空间。

相关概念

完备与闭:前面讲,完备类似于闭,那么,“完备”与“闭”的区别在何处呢?它们的区别在于,完备是空间或集合的性质,而闭是子集的性质。通常我们说某个集合是闭集或开集,实际上是指该集合是R或某个拓扑空间的闭子集或开子集。例如,开区间(0, 1)是全集(0, 1)或(0,1)∪ ∪ -->(2,3){\displaystyle (0,1)\cup (2,3)}的闭子集,因为(0, 1)在这两个全集中的导集是其自身。但(0, 1)是R的开子集。闭子集可以用收敛序列定义,因为收敛序列的极限点总是在全集中的,极限点在子集中与否决定该子集是否为闭子集。与此相对,完备性的定义中没有全集的概念,这也是为什么在其定义中必须用柯西序列而不能用收敛序列,因为在收敛序列的定义中必有极限点,若该极限点不在度量空间中,则收敛序列中的点到该极限点距离是未定义的。

参见

数学分析术语

引用

Tsolomitis, Yuli Eidelman ; Vitali Milman ; Antonis. Functional analysis an introduction. Providence, RI: American Mathematical Soc. 2004. ISBN 9780821836460. 

张恭庆,林源渠,泛函分析讲义 (1987)北京大学出版社,ISBN 978-7-301-00489-0/O.097


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 哥德尔不完备定理
哥德尔不完全性定理的证明思路只要证明了初等算数理论Π是不完全的,采用相同的方法就可以证明任何包含Π的形式理论都是不完全的证明Π的不完全性的关键是在于构造出初等算数语言Ľ中的一个含义为真的语句Α,证明如果Α能被证明则将推出矛盾包含初等算数理论的意义是它包含所有正整数(无穷元素)。而命题和证明都可以被映射到正整数。另一方面,它还支持归纳集,即及由一些初始元素及新元素构成的集合,而新元素都是由初始元素归纳(运算)而得的。形式理论由公理及定理构成,定理可以看作是公理及已知定理的归纳,因而形式理论本身可以表示成以某些正整数为初始元素的某种归纳集。这使得可证性变为算术命题所构造的语句Α类似于“说谎者悖论”(即“我在说谎”),但Α是“本语句不可证”。对这一形式化的Α如果假设Α可证将推出矛盾,但假设Α不可证却不能推出矛盾,所以Α不是一个悖论。而Α的含义是它不可证,而它又被证明是不可证的,因此Α是个不可证的...
· 空间
概论亚里斯多德将空间定义为事物的“场所”(希腊语:τόπος)。几何学被用来计算及定义空间。各种空间哲学中的空间物理学中的空间牛顿提出的理论中,空间被视为是两个物体的相对位置,抽象化后形成的一组坐标参考系。数学中的空间
· 模空间
参看面向物理的模空间的表述,参看模。
· 积空间
定义令I为(可能无穷的)指标集,并设Xi对于I中由i所对应的每一个拓扑空间。置X=ΠXi,也即集合Xi的卡积。对于每个I中的i,我们有一个标准投影pi:X→Xi。X上的积拓扑定义为所有投影pi在该拓扑下连续的最疏拓扑(也就是开集最少的拓扑)。该乘积拓扑有时也称为吉洪诺夫拓扑。很明显,X上的乘积拓扑可以表述为形为pi(U)的集合生成的拓扑,其中i属于I,而U是Xi的一个开集。换句话说,集合{pi(U)}构成X上的拓扑的子基。X的子集是开的当且仅当它是(可能无穷多的)的有限个形为pi(U)的集合的交集的并集。pi(U)有时称为开柱,而它们的交集称为柱集。我们可以用构成X的空间Xi的基来表述乘积拓扑的基。设对于每个i属于I,选取一个集合Yi或者是整空间Xi或者是该空间的一个基,并且满足Xi=Yi对于除了有限个I中的i之外的所有i成立。令B为集合Yi的卡积。所有可以这样构造的B集合的族构成乘积空间...
· 紧空间
历史和动机术语“紧致”是莫里斯·弗雷歇在1906年介入的。很久以来就认识到了像紧致性这样的性质对于证明很多有用的定理是必需的。最初“紧致”意味着“序列紧致”(所有序列都有收敛子序列)。这是在研究主要的度量空间的时候。“覆盖紧致”定义已经变得更加突出,因为它允许我们考虑更一般的拓扑空间,并且关于度量空间的很多已有结果可以推广到这种设置。这种推广在研究函数空间的时候特别有用,它们很多都不是度量空间。研究紧致空间的主要原因之一是因为它们以某种方式类似于有限集合:有很多结果易于对有限集合证明,其证明可以通过极小的变动就转移到紧致空间上。常说“紧致性是在有限性之后最好的事情”。例如:假设X是豪斯多夫空间,我们有一个X中的点x和不包含x的X的有限子集A。则我们可以通过邻域来分离x和A:对于每个A中的a,设U(x)和V(a)分别是包含x和a的不相交的邻域系统。则所有U(x)的交集和所有V(a)的并集就是...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信