近似
数学
逼近理论(Approximation theory)是数学中的一个分支,是一种量化的泛函分析。丢番图逼近是用有理数来逼近实数。当一个数的真正数值未知或难以获得时,就可以用近似(即逼近)的方式处理。有时存在一些已知的近似值可以表示其真正数值,而又不会有太大的误差,例如圆周率π常简写为3.14159,或是√2用1.414来表示。
当使用数字的有效数字很小时,也会出现数值逼近的情形,运算常会带来舍入误差,因此会产生逼近。像对数表、计算尺及计算器在计算大部分的运算时也都会有数值逼近。像电脑计算的结果就是以有限位数的有效数字来呈现,因此也有数值逼近,不过可以借由设计.使其逼近误差更低,产生更准确的结果。在电脑处理时,当一个小数无法用有限位数的二进数小数表示时,就会产生数值逼近。
和函数逼近有关的是函数的渐近值,也就是当函数的一个或数个变数无限制的变大时,函数所对应的数值。例如级数(k/2)+(k/4)+(k/8)+...(k/2^n)会渐近等于k。可惜上述的关系没有类似等号的固定符号来表示。有些数学书籍是用≈表示逼近等于,用~表示表示逼近等于,但也有其他书籍的表示方式恰好相反。
另一个例子是在进化算法中,为了加速收敛的速率所导入的适应度逼近(英语:fitness approximation),可以针对适应度函数(英语:fitness function)建模,以选择较佳的搜寻方式。
科学
在科学实验中也有逼近的情形.科学理论的预测可能会和实际量测的结果不同,其原因可能因为有一些实际情形下的因素,在理论中没有考虑到。例如在考虑自由落体的运动时.未考虑阻力对物体的影响,因此理论也是对实际情形的一种逼近。若因为量测技术的限制,使得量测值和实际值不同,此情形的量测值也是实际值的逼近。
在科学史上,许多定理会随着时间演进,考虑更多的因素和影响,早期的定理也就成为后来定理的一个逼近。例如依照对应原理,较新的定理会取代较早期的定理,在适当的条件下,二个的结果相同,但较新的定理可以考虑较多的因素或是适用在一些特别的情形,此时较早期的定理就是较新的定理的一个近似,例如系统“大”的情况下,较早期的古典物理学可以认为是较晚期量子物理学的一个近似。
有些物体问题难以直接分析,或是在现有可有的解析工具下进展有限,因此利用近似可以在简化问题的复杂程度下,得到够精确的结果。例如物理学家多半会假设地球为一球体,既使有更精确的方式可以描述地球的形状,但假设地球为一球体时,一些物理特性(像重力)的计算会容易很多。
在分析多个星体围绕一恒星运转时(即多体问题),也会用近似的方式处理。由于各星体之间都会有万有引力,在计算上相当困难。近似的解法是利用迭代方式进行,一开始先只假设恒星不动,不考虑恒星以外各星体之间的作用力,若需要更精确的结果,则以第一次计算的位置为准,在考虑更多作用力的情形下再进行一次迭代,一直到有够精确的结果出现为止。利用微扰理论来修正误差,可以得到更精确的结果。
在最佳化算法中,有些问题的最佳解很不容易取得,或是时间复杂度太高,此时可以用近似算法,设法找出够好的解,而不一定是最佳解。
符号
一般会用波浪状或有加点的等点来表示:
≈ (Unicode 2248), 表达近似的是“波浪”等号。
≃ (Unicode 2243), ≈ 和 = 的混合,也用于代表渐近于
≅ (Unicode 2245), 另一个 ≈ 和 = 的混合,有时用来代表同构、同余关系又或几何学的全等。
~ (Unicode 007E), 有时用来代表正比、和等价关系有关、几何学的相似,又或代表随机变数根据概率分布的分布情况。
≒ (Unicode 2252), 用于日文和韩文
相关条目
近似等号
逼近误差
同余关系
费米问题
最小二乘法
线性近似
牛顿法
数值分析
龙格-库塔法
循续渐近式类比数位转换器
泰勒级数
近似算法
圆周率
欧拉数
正弦
外部链接
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值