族谱网 头条 人物百科

神经振荡

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:782
转发:0
评论:0
总览神经振荡发生于中枢神经系统的各个层次:动作电位、局部场电位和脑电图。一般来说,这种振荡可以根据其频率、振幅和相位来进行分类。这些信号特征可以通过时间-频率分析进行提取。在大部分神经振荡中,幅度的变化被认为是起源于神经元群体的同步性变化,也就是指神经元活动的局部同步化。除了局部同步化以外,较远的神经元组织结构的振荡活性也可以发生同步化。神经振荡与同步化一起,在许多认知功能中发挥着重要的作用,如神经元之间的信息传递,感觉,运动控制和记忆。人们曾经从大群神经元活动层面广泛的研究过神经振荡。大群神经元的活性可以通过脑电图(EEG)记录。一般来说,EEG的信号与粉红噪声有相近的频谱,但是仍然可以通过其特定的频率段来揭示其振荡活性。第一个也是到目前为止最有名的频率段是alpha波(8–12Hz),这种波可以在人们处于闭眼、清醒并且放松的情况下从枕叶记录到。其他的频率段还有delta波(1–4Hz)...

总览

神经振荡发生于中枢神经系统的各个层次:动作电位、局部场电位和脑电图。一般来说,这种振荡可以根据其频率、振幅和相位来进行分类。这些信号特征可以通过时间-频率分析进行提取。在大部分神经振荡中,幅度的变化被认为是起源于神经元群体的同步性变化,也就是指神经元活动的局部同步化。除了局部同步化以外,较远的神经元组织结构的振荡活性也可以发生同步化。神经振荡与同步化一起,在许多认知功能中发挥着重要的作用,如神经元之间的信息传递,感觉,运动控制和记忆。

人们曾经从大群神经元活动层面广泛的研究过神经振荡。大群神经元的活性可以通过脑电图(EEG)记录。一般来说,EEG的信号与粉红噪声有相近的频谱,但是仍然可以通过其特定的频率段来揭示其振荡活性。第一个也是到目前为止最有名的频率段是alpha波(8–12 Hz),这种波可以在人们处于闭眼、清醒并且放松的情况下从枕叶记录到。其他的频率段还有delta波(1–4 Hz), theta波(4–8 Hz), beta波(13–30 Hz)and gamma波(30–70 Hz),其中gamma波被认为与参与了人们的认知过程。然而,EEG信号在睡眠时会有比较大的变化,通常会由高频的alpha波向低频的慢波过渡。事实上,不同的睡眠相就是通过它们的频谱来界定的。因此,神经振荡与认知状态有关系,比如意识状态与清醒程度。

尽管人脑的神经振荡活动在大多数情况下使用EEG来记录,使用单细胞记录手段也可以记录到这样的活动。神经元可以产生一些动作电位或者发放的节律性活动。某些神经元倾向于像谐振器那样按照某个固定的频率发放。另外一种形式的节律性发放是簇状发放。神经元的发放模式被认为是大脑中神经编码的基础。在没有动作电位的情况下,神经振荡也可以体现在阈下膜电位的振荡中。如果大量的神经元同步发放,可以引起局部场电位(LFP)的振荡。目前已经有人做出一些用来估计神经振荡强度的定量模型。

神经振荡通常从神经动力学的数学网络角度出发进行研究;神经动力学隶属于认知科学,主要关注于大脑活动的动力性质。这门学科将大脑看作一个动力系统,并使用偏微分方程来描述神经元的活动是怎样随着时间变化的,尤其是在认知过程的感觉和记忆过程中,大脑活动的动力特性,并且对神经振荡进行分析。但当涉及到分析更加偏生理学的数据时,通常使用计算机对神经元活动进行模拟并进行建模。

神经振荡有广泛的功能,而且随着振荡类型的不同而有不同的功能。最突出的例子是节律性活动的产生,如心跳和感觉认知中物体的形状、颜色识别过程中的视觉特征绑定。神经振荡在某些神经疾病的发生过程中起着重要的作用,比如癫痫发作时皮层电活动的过度同步化,还有帕金森病人的手震现象。神经振荡也可以被提取出来,训练被试者产生不同的大脑节律,通过脑机接口来控制外部设备。

生理学

振荡现象可以在中枢神经系统的各层组织结构中发现。目前工人的有三个层次:微观--单个神经元层次,中观--局部群体神经元层次,和宏观层次--不同脑区的活动。

微观

中观

宏观

发生机理

神经元性质

神经网络性质

神经调控

数学描述

单神经元模型

发放模型

神经网络质量模型

神经振荡

大规模神经网络质量模型对癫痫病发作起始的模拟。当大锥体神经元开始发放时,整个神经网络的振荡维持在3Hz。

Kuramoto模型

振荡模式

无论是单个神经元还是群体神经元都可以产生自发振荡活动。另外,这种振荡还有可能随着感觉输入或者运动输出的变化而变化。某些类型的神经元会在没有任何突触性输入的情况下产生有节律的发放。同样的,在被试者没有参与任何活动时,在整个大脑的尺度范围上记录到的振荡活动,这叫做静息态电活动。这些进行性节律能够随着感觉输入或者运动输出的变化而做出不同的响应。这些响应通常表现为频率或者振幅的增减,有时也会出现一个短暂的停顿,这叫做相位复位。另外,有些能够引起附加响应的外部活动与脑的自发电活动之间有可能没有相互作用。

脑的自发电活动

在英文中有两个名词与脑的自发电活动相对应,一个是spontaneous activity,另外一个是ongoing acitivity。脑的自发电活动是指,在脑没有执行任何明确的任务(比如处理感觉输入或者运动输出)时的电活动,也叫做静息态活动。与这种自发电活动相对的是由感觉或者运动输入引起的诱导性电活动。脑的自发电活动这个名词在脑电图和脑磁图中用来描述那些与生理刺激无关的脑电活动。生理学家在研究外部生理刺激诱发的电活动时,通常将自发电活动当作噪声处理。然而,近些年来的研究表明,脑的自发电活动在脑的发育,比如神经网络和突触形成中起了关键的作用。由于能够反映脑的精神状态(清醒或警觉),脑的自发电活动还被应用到睡眠的研究中。一些特定类型的振荡活动,比如alpha波,就是脑自发电活动的一部分。对alpha波的功率波动进行统计分析发现存在双峰分布现象,比如一个一个高振幅态和一个低振幅态,表明脑的自发活动并不仅仅反映了大脑对信号的高斯噪声处理。在fMRI中,血氧依赖的BOLD信号的自发波动揭示了与脑的自发活动相关的一些活动模式,比如缺省网络(default network)。静息态网络的时序演变与不同频率段EEG活动的波动有关。

由于与输入的刺激之间存在相互作用,脑的自发电活动在感觉形成中可能也起了重要的作用。针对EEG的研究发现视觉知觉依赖于皮层振荡活动的相位和幅度。比如,我们可以用alpha波的振幅和相位来预测一个较弱的刺激能否被被试者感觉到。

频率响应

神经元可以随着输入信息的变化而改变其电活动振荡的频率。这种现象在单个神经元中非常普遍,单个神经元可以根据其接收到的输入信息的变化而改变其发放率,也叫做频率编码。神经元发放的频率变化在某些节律的产生中也非常普遍,比如对走路时腿部运动频率的编码。但是在波及多个脑区的振荡活动中,由于振荡频率通常与电活动在不同脑区之间的延迟有关,因此频率的变化并不是很普遍。

振幅响应

相位复位

附加响应

另外参见

计算神经科学

系统神经科学

神经控制论

控制论

动态系统理论

脑电图

脑磁图

扩展阅读



免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 振荡
简谐振子例子
· 中微子振荡
实验观测科学家应用各种不同的探测器技术对各能量级的中微子进行测量,如今各种来源的中微子振荡已被多方面的实验收集的大量证据所证实。太阳中微子振荡在以美国科学家雷蒙德·戴维斯领导的Homestake实验(英语:Homestakeexperiment)中,发现观测到的中微子流量与标准太阳模型预测的不符(太阳中微子问题)。这是实验中人们第一次观测到和中微子振荡有关的现象。随后,更多基于使用放射性元素和水切连科夫辐射探测器的实验证实了同样的现象。直到2001年加拿大萨德伯里中微子天文台的测量结果发表,人们才能够充分的证实这数量上的不符是由中微子振荡引起的。太阳中微子的能量及一般在20兆电子伏以下,传播距离为太阳和地球之间的距离。在5兆电子伏以上,太阳中微子的振荡通过在太阳体内的振荡而产生MSW作用,这与下文中将会提到的真空振荡是两个不同的过程。大气层中微子振荡早期IMB,MACRO和日本的神冈探测器
· 电子振荡器
谐波振荡器反馈线性振荡器的框图;放大器A的输出vo由滤波器β(jω)反馈到它的输入vf。谐波(线性(英语:Linearcirt))振荡器产生正弦输出。分为两类:反馈振荡器线性振荡器的最常见的形式是电子放大器(如晶体管或运算放大器),放大器的输出通过反馈网络接回选频滤波器的输入。当放大器的电源开始供应的瞬间,在放大器的输出端只有噪声。这些噪声传到窄频滤波器,使噪声中特定部分频率被滤波出来,出现在滤波器的输出端。因为滤波器的输出又接到放大器的输入,所以滤波后的信号经由放大器放大,再进入滤波电路滤波……如此循环往复,一直到输出信号正好是我们所要的信号为止。反馈振荡器电路可以根据它们在反馈回路中使用的选频滤波器的类型进行分类:在一个RC振荡器电路中,该滤波器是一个电阻和电容网络。RC振荡器主要用于产生较低的频率,例如在音频范围内。常见的RC振荡器电路类型有相移振荡器和文氏电桥。在一个LC振荡器电路...
· 神经
名词来源古代汉语的涵义是指神秘且奥妙的典籍,最初的汉译是“细筋”。而近代医学用词“神经”系由杉田玄白翻译荷兰医学书籍所创造新的名称,是荷兰语的Zenuw的意译词,把神气的“神”和经脉的“经”合并成“神经”一词,20世纪初大量日语词汇涌入中国,现为流行使用的中文译名。解剖结构周围神经,横切面每一条神经的外部都被一层致密的结缔组织所包覆,称为神经外膜,其内亦包埋了提供营养的血管。神经内的神经纤维被神经束膜分隔为数个神经纤维束。每个神经纤维周围亦有神经内膜包覆。神经外膜内包埋的血管分支通过神经束膜,在神经内膜形成血管网。神经内膜亦具有淋巴管。神经分类按照连结至中枢神经系统的位置,脊椎动物的神经可分为两类:脊神经(英语:Spinalnerve)与脊髓连结,而脑神经则直接与脑的各部位连结。在四肢的基部伸向四肢的神经分臂神经丛和腰骶神经丛。脊神经以连结至脊髓时所通过的脊椎骨作为编号依据,脑神经的编号则
· 神经成像
概览根据成像的模式,神经成像可以分为结构成像,用来展现脑的结构,从而辅助对一些脑疾病(例如脑肿瘤或脑外伤)的诊断。功能成像,用来展现脑在进行某种任务(包括感觉,运动,认知等功能)时的代谢活动。功能成像主要用于神经科学和心理学研究,不过近来正逐步成为医学神经科诊断的新途径。历史1918年美国神经外科医生WalterDandy发明了脑室像技术。Dandy的技术是基于X光成像对侧脑室的空气注射。1927年,葡萄牙神经科学家EgasMoniz发明了脑血管成像技术。该技术能够准确呈现颅内正常和异常的血管。1970年,A.M.Cormack和G.N.Hounsfield发明了计算机断面成像技术。这种技术可以获取较高分辨率的脑结构图像。他们两人因此于1979年获得诺贝尔医学或生理学奖。不久之后,放射性配子(Radioligand)的发明引发了两种新的神经成像技术,包括单光子发射计算机断面成像(SPECT...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信