族谱网 头条 人物百科

切空间

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:721
转发:0
评论:0
非正式描述一个n维的流形可理解为由多个同为n维的曲面(超曲面)。一般情况下,因为所有流形可以嵌入欧几里得空间,流形上的光滑函数就是欧几里得空间中的光滑函数。欧几里得空间的优势在于可以进行微分,透过微分流形(differentialmanifold)的代数关系,可以将欧几里得空间中的微积分搬上光滑流形。切空间也可以理解为在该点和流形相切的欧几里得空间的仿射子空间(affinespace)。所有切线空间可以“胶合在一起”,并形成基于原流形两倍维度的可微分流形(differentiablemanifold),称之流形的切丛(tangentbundle)。正式定义上述的非正式描述依赖于嵌入在较大向量空间R,使得切向量可以从流形延伸出到更大的空间。切空间更好的定义不依赖于这种嵌入,例如,切向量可以定义为通过该点的曲线的等价类,或者是对光滑函数在该点的在某个方向上的求导。但所有这些定义都是等价的。虽然...

非正式描述

一个n维的流形可理解为由多个同为n维的曲面(超曲面)。一般情况下,因为所有流形可以嵌入欧几里得空间,流形上的光滑函数就是欧几里得空间中的光滑函数。欧几里得空间的优势在于可以进行微分,透过微分流形(differential manifold)的代数关系,可以将欧几里得空间中的微积分搬上光滑流形。切空间也可以理解为在该点和流形相切的欧几里得空间的仿射子空间(affine space)。

所有切线空间可以“胶合在一起”,并形成基于原流形两倍维度的可微分流形(differentiable manifold),称之流形的切丛(tangent bundle)。

正式定义

上述的非正式描述依赖于嵌入在较大向量空间 R, 使得切向量可以从流形延伸出到更大的空间。切空间更好的定义不依赖于这种嵌入,例如,切向量可以定义为通过该点的曲线的等价类,或者是对光滑函数在该点的在某个方向上的求导。但所有这些定义都是等价的。虽然通过曲线的速度的定义是直观上最简单的,但是也是挺麻烦的工作。更加优雅和抽象的方法描述如下。

曲线速度定义

在嵌入的流形图(manifold picture)中,点x处的切向量被认为是通过点x的曲线的“速度”。因此,我们可以取切向量作为通过x的曲线的等价类(equivalence class),而在x处彼此相切。

假设 M是C流形(k ≥ 1),x是M中的点。选择图表 : φ : U → R,其中U是包含x的M的开放子集。假设两个曲线γ1 : (−1,1) → M 和 γ2 : (−1,1) → M,其中γ1(0) = γ2(0) = x,使得φ ∘ γ1和 φ ∘ γ2都可以在0处微分。然后,如果在0处的正常导数(ordinary derivatives)φ ∘ γ1与φ ∘ γ2在0处的正常导数一致(coincide),则γ1 和 γ2在0处被称为等价。这定义此曲线上的等价关系,并且等价类被称为在x处的 M的切线向量。

导数定义

假设M是C流形。如果f ∘ φ对于每个图表: φ : U → R是无限可微的,则实值函数f : M → R属于C(M)。C(M)是点积乘积(pointwise product)和函数总和(sum of functions)与标量乘法(scalar multiplication)的实关联代数(associative algebra)。

在M中选择一个点x。在x处的导数是线性映射D : C(M) → R,其具有对于C(M)中的所有f, g的性质:

根据微积分的乘法规则(product rule)建模。如果我们为这样的导数定义加法和标量乘法

(D1+D2)(f)=D1(f)+D2(f){\displaystyle (D_{1}+D_{2})(f)=D_{1}(f)+D_{2}(f)} 以及 (λ λ -->D)(f)=λ λ -->D(f){\displaystyle (\lambda D)(f)=\lambda D(f)}

我们得到一个实际的向量空间,我们定义为切空间TxM。

余切空间的定义

再一次,我们从C流形M 开始,并且点x 在M中。考虑由所有函数f 组成的C(M)中的理想I,使得f(x) = 0。也就是说,定义通过x的曲线或表面之类的函数。然后I和I 是实向量空间,并且TxM可以被定义为商空间(quotient space )I / I的对偶空间(dual space)。后者之商空间也被称为x处的流形M 之余切空间。

属性

如果 M是R的开子集(open subset),则 M是C流形的自然形式(将图视为恒等函数),并且切线空间都自然以R加以识别。

正切向量作为方向性导数

另一种考虑切向量的方法是方向导数。给定R中的向量v定义了在点x处的平滑映射f : R → R的方向导数

这个映射是自然的导数。此外,结果是C(R)的每个推导具有这种形式。因此,在向量(在一点被认为是切向量)和导数之间存在一对一映射。

映射导数

每个平滑(或可微)流形的映射φ : M → N在相应的切线空间之间引导自然线性映射:

如果切线空间通过曲线定义,则地图定义为

相反,如果通过导数定义切线空间,则

线性图dφx被称为x的导数、总导数、微分或前推(pushforward)。它经常用各种符号表示:

在某种意义上,导数是对于x附近的φ的最佳线性近似。注意,当N = R时,映射dφx : TxM → R与函数φ的微分的通常概念一致。在局部坐标中,φ的导数可由雅可比矩阵给出。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 空间
概论亚里斯多德将空间定义为事物的“场所”(希腊语:τόπος)。几何学被用来计算及定义空间。各种空间哲学中的空间物理学中的空间牛顿提出的理论中,空间被视为是两个物体的相对位置,抽象化后形成的一组坐标参考系。数学中的空间
· 模空间
参看面向物理的模空间的表述,参看模。
· 积空间
定义令I为(可能无穷的)指标集,并设Xi对于I中由i所对应的每一个拓扑空间。置X=ΠXi,也即集合Xi的卡积。对于每个I中的i,我们有一个标准投影pi:X→Xi。X上的积拓扑定义为所有投影pi在该拓扑下连续的最疏拓扑(也就是开集最少的拓扑)。该乘积拓扑有时也称为吉洪诺夫拓扑。很明显,X上的乘积拓扑可以表述为形为pi(U)的集合生成的拓扑,其中i属于I,而U是Xi的一个开集。换句话说,集合{pi(U)}构成X上的拓扑的子基。X的子集是开的当且仅当它是(可能无穷多的)的有限个形为pi(U)的集合的交集的并集。pi(U)有时称为开柱,而它们的交集称为柱集。我们可以用构成X的空间Xi的基来表述乘积拓扑的基。设对于每个i属于I,选取一个集合Yi或者是整空间Xi或者是该空间的一个基,并且满足Xi=Yi对于除了有限个I中的i之外的所有i成立。令B为集合Yi的卡积。所有可以这样构造的B集合的族构成乘积空间...
· 紧空间
历史和动机术语“紧致”是莫里斯·弗雷歇在1906年介入的。很久以来就认识到了像紧致性这样的性质对于证明很多有用的定理是必需的。最初“紧致”意味着“序列紧致”(所有序列都有收敛子序列)。这是在研究主要的度量空间的时候。“覆盖紧致”定义已经变得更加突出,因为它允许我们考虑更一般的拓扑空间,并且关于度量空间的很多已有结果可以推广到这种设置。这种推广在研究函数空间的时候特别有用,它们很多都不是度量空间。研究紧致空间的主要原因之一是因为它们以某种方式类似于有限集合:有很多结果易于对有限集合证明,其证明可以通过极小的变动就转移到紧致空间上。常说“紧致性是在有限性之后最好的事情”。例如:假设X是豪斯多夫空间,我们有一个X中的点x和不包含x的X的有限子集A。则我们可以通过邻域来分离x和A:对于每个A中的a,设U(x)和V(a)分别是包含x和a的不相交的邻域系统。则所有U(x)的交集和所有V(a)的并集就是...
· 命名空间
C++中的命名空间在C++语言中,命名空间是一种实体(entity),使用namespace来声明,并使用{}来界定命名空间体(namespacebody)。例:namespacefoo{intbar;}和C语言的全局作用域兼容,C++具有全局命名空间作用域,对应的命名空间是全局命名空间。全局命名空间不需要声明。使用时,可以用前缀为::的qualified-id显式限定全局命名空间作用域中的名称。例如,::operatornew指称全局new运算符函数。命名空间可以在另一命名空间之中嵌套声明;但不能声明在类和代码块之中。在命名空间中声明的名称,默认具有外部链接属性(除非声明的是const对象,它默认是具有内部链接属性)。按照是否有名字,可分为有名字的命名空间与匿名命名空间。后者的声明为:namespace{namespace-body(即声明序列(可选))}匿名命名空间中的名字具有文件作用...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信