族谱网 头条 人物百科

放射性碳定年法

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:567
转发:0
评论:0
基础碳以同位素混合物形式存在于大气和所有生命组织中(在组织存活时期混合物的比例为恒定)。碳有两个稳定同位素:碳-12(C)和碳-13(C)。除此之外,还有一些微量的不稳定(放射性)同位素:碳-14(C)。C的半衰期为5730年,因此它要用很长的时间才可完全消失,当(动物或植物)组织死亡后,由于碳-14会经历衰变,其比例就会降低,于是死亡样品的年龄可以通过测量样品的碳-14含量来确定。碳-14是放射性的,它的形成是由于宇宙射线撞击在地球大气层中氮的随机反应。当宇宙射线进入大气层,它们经过数重转化,包括中子的形成。这些中子撞击氮-14原子会有以下的反应:碳-14主要在30,000-50,000呎高空和较高的纬度形成,经由大气循环平均分布于大气之中,并且与氧进行反应而形成二氧化碳。透过大气与海水间的气体交换,二氧化碳亦会溶解于水体之中。由于假设在一段长时间之中,宇宙射线通量(flux)是均等的,...

基础

碳以同位素混合物形式存在于大气和所有生命组织中(在组织存活时期混合物的比例为恒定)。碳有两个稳定同位素:碳-12(C)和碳-13(C)。除此之外,还有一些微量的不稳定(放射性)同位素:碳-14(C)。C的半衰期为5730年,因此它要用很长的时间才可完全消失,当(动物或植物)组织死亡后,由于碳-14会经历衰变,其比例就会降低,于是死亡样品的年龄可以通过测量样品的碳-14含量来确定。碳-14是放射性的,它的形成是由于宇宙射线撞击在地球大气层中氮的随机反应。当宇宙射线进入大气层,它们经过数重转化,包括中子的形成。这些中子撞击氮-14原子会有以下的反应:

碳-14主要在30,000-50,000呎高空和较高的纬度形成,经由大气循环平均分布于大气之中,并且与氧进行反应而形成二氧化碳。透过大气与海水间的气体交换,二氧化碳亦会溶解于水体之中。由于假设在一段长时间之中,宇宙射线通量(flux)是均等的,故可假设碳-14是均速形成的;因此,在地球大气层和海洋中放射性与非放射性的碳的比例是固定的:约为1 ppt(part per trillion,1兆分之1:每一摩尔六千亿原子)。

植物进行光合作用吸入大气层中的二氧化碳,然后又被动物进食,故此所有生物都固定地与大自然交流着C,直至它们死亡。一旦死亡之后,这个交流就会停止,C的含量就会透过放射衰变逐步减少。这个衰变可以用来计量一个已死的生物的死亡时间。

传统的C测定是借由数出个别碳原子的放射衰变数量(见液相闪烁计数)而测定放射性碳元素的含量。然而此种测量方式较不灵敏且受制于统计误差的干扰,举例来说,在开始的时候已并不多的C,由于其半衰期很长,故短时间内很少原子会发生衰变,所以探测衰变量变得相当困难(例:刚死去时的衰变为4原子/秒·摩尔,10000年后衰变为1原子/秒·摩尔)。因此使用传统闪烁记数方式的C定年需要较多的样本与测定时间。

利用加速器质谱仪(AMS)的技术,C可以直接数出,灵敏度和敏感度因而大大提升。粗略的放射性碳定年通常以B.P.(before present)来表示。BP就是从1950年起以前的放射性碳年数。这是一个名义上于1950年C在大气层水平(假定这个水平不变:见下文“校准”)。

放射性碳实验报告会是一个不肯定的数字,如3000±30BP指出一个标准偏差为30放射性碳年。传统地这个误差只包括统计数量的不确定,但一些实验室会提供一个“误差乘数(暂译:error multiplier)”,将这个数字乘不确定的数量就可计算出其他于测量中所出现的误差。

利比半衰期和剑桥半衰期

碳定年法系由一支由威拉得·利比带领的队伍发展的。原本人们用的碳-14半衰期是5568±30年。这个就是“利比半衰期(暂译:Libby half-life)”。其后量度出一个更准确的“剑桥半衰期(暂译:Cambridge half-life)”为5730±40年。然而实验室继续利用利比的数字来避免混淆。一个由利比的数字来得出定年可借由乘以一个比例(约为1.03)校准,但这并不是必须的,因为这可由现代的校准曲线来调校。

校准

放射性碳实验报告所得出之年代并无法直接反映样本的生成年代。由于现实环境中宇宙射线的通量并不是一个恒定的值,因此每一个时期内大气中的C含量并不固定。因此要让测定年代能准确的对应到样本的可能生成年代,必须对测定年代使用校准曲线进行校准,以推测其可能形成之时间。C校准曲线是由已知年代之样本与测定年代相对应而建立的。对于陆地样本而言,目前所通用的校准年代系透过现生与化石树木之树轮测定而校准的。对于海洋样本而言,由于洋流作用之关系,C的含量平衡速率较慢,因此校准年代远较陆地样本困难。现今海洋样本的校正曲线系透过已知年代的现生与化石珊瑚测定而成,另外在不同的地方另需要考虑洋流作用与区域环境的额外影响。

参考资料

Bowman, Sheridan. Interpreting the Past: Radiocarbon Dating. Berkeley: University of California Press. 1990. ISBN 0520070372. 

Currie, L.The Remarkable Metrological History of Radiocarbon Dating II(PDF). J. Res. Natl. Inst. Stand. Technol. 2004, 109: 185–217. 

de Vries, H. L.(1958). "Variation in Concentration of Radiocarbon with Time and Location on Earth", Proceedings Koninlijke Nederlandse Akademie Wetenschappen B, 61: 94-102; and in Researches in Geochemistry, P. H. Abelson(Ed.,1959)Wiley, New York, p. 180.

Friedrich, M.; et al.. The 12,460 Year Hohenheim Oak and Pine Tree─Ring Chronology from Central Europe—a Unique Annual Record for Radiocarbon Calibration and Paleoenvironment Reconstructions. Radiocarbon. 2004, 46: 1111–1122. 

Gove, H. E.(1999)From Hiroshima to the Iceman. The Development and Applications of Accelerator Mass Spectrometry. Bristol: Institute of Physics Publishing.

Kovar, Anton J.Problems in Radiocarbon Dating at Teotihuacan. American Antiquity. 1966, 31: 427–430. doi:10.2307/2694748. 

Lerman, J. C.; Mook, W. G.; Vogel, J. C.; de Waard, H. Carbon-14 in Patagonian Tree Rings. Science. 1969, 165 (3898): 1123–1125. PMID 17779805. doi:10.1126/science.165.3898.1123.  ; *Lerman, J. C., Mook, W. G., and Vogel, J. C.(1970)Proc. 12th Nobel Symp.

Lorenz, R. D.; Jull, A. J. T.; Lunine, J. I.; Swindle, T. Radiocarbon on Titan. Meteoritics and Planetary Science. 2002, 37: 867–874. 

Mook, W. G.; van der Plicht, J.Reporting 14C activities and concentrations(PDF). Radiocarbon. 1999, 41: 227–239. 

Weart, S.(2004)The Discovery of Global Warming - Uses of Radiocarbon Dating.

Willis, E.H.(1996)Radiocarbon dating in Cambridge: some personal recollections. A Worm"s Eye View of the Early Days.


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 无定形碳
现代科学矿物学在矿物学上的定义,无定形碳泛指除了石墨与钻石之外的不纯碳物质,包括了:煤炭煤烟焦炭木炭骨炭碳化物衍生碳(英语:Carbide-derivedcarbon)无定形碳跟少量砂子、氧化铁催化剂混合,在约3500℃中加热,使产生的碳蒸气凝聚,可得人造石墨。在15世纪就已知道属于无定形碳的木炭具有吸附性。19世纪在提纯白糖时就开始使用木炭。以后又对无定形碳进行很多处理,产生了一些种类。参看碳同素异形体
· 碳-碳键
支链碳原子亦可以与不同数量的其他碳原子形成键,形成在碳-碳骨架中同样常见的支链。按照中国传统的伯仲叔季的辈份顺序,将含碳基团按照直接键合碳原子基团的数目定义为伯碳、仲碳、叔碳和季碳:位于2,2,3-三甲基戊烷上的伯碳、仲碳、叔碳和季碳原子伯碳原子(Primarycarbonatom):又称一级碳原子,可用1°表示,是指碳基团仅与一个碳原子直接相连,和伯碳原子相连的氢原子成为伯氢原子。如:乙醇(伯醇)。在有机化学反应中,伯碳自由基最不稳定,所以相应的能量最高。仲碳原子(Secondarycarbonatom):又称二级碳原子,可用2°表示,是指连有两个碳原子的碳原子,和仲碳原子相连的氢原子成为仲氢原子。如:异丙醇(仲醇)。叔碳原子(Tertiarycarbonatom):又称三级碳原子,可用3°表示,是指与三个碳原子直接相连的碳原子,和叔碳原子相连的氢原子成为叔氢原子。如:叔丁醇。叔碳原子的...
· 放射性
历史1907年居里夫妇及他们在巴黎的实验室放射性是由法国科学家亨利·贝可勒尔在1896年研究磷光材料时发现,磷光材料在暴露在日光下后,在黑暗中会发光,他认为X射线碰撞阴极射线管后发出的光和磷光有关。他将照片底片卷在黑色纸张内.上面放置许多不同的磷光材料,一直到用铀盐时底片才有影像,即使底片被黑色纸张挡住内.底片仍有黑色的感光图像。这种辐射被称为“贝可勒尔射线”。后来很快就发现上述的感光和磷光无关.因为使用非磷光材料的铀盐甚至铀金属,也会有一样的效果。因此推断有一种不可见的辐射可以穿过黑色纸张,使底片感光而变黑。一开始大家认为这种辐射类似刚发现的X光。像贝可勒尔、欧内斯特·卢瑟福、保罗·维拉尔(英语:PaulVillard)、皮埃尔·居里、玛丽·居里等人的研究发现这种辐射比X光复杂。卢瑟福是第一个发现其衰变方式都依循着指数形式衰减。卢瑟福和他的学生弗雷德里克·索迪最早发现许多的衰变会造成核嬗...
· 感生放射性
参考词条放射性中子温度
· 碳
特性经理论推测的碳相图碳的各种同素异形体的物理特性差异极大,例如钻石是最坚硬的天然物质,而石墨则是最柔软的物质之一。碳可以和众多较小原子(包括碳原子)产生多个共价键,因此碳化合物的总数是各个元素中最高的,已发现的有近一千万种,占所有已知化合物的绝大多数。碳的升华点是所有元素中最高的。在标准大气压下,碳没有熔点,因为它的三相点位于10.8±0.2MPa、4,600±300K(约4,330°C),而是会在3,900K左右升华。因此所有碳同素异形体的固体温度上限比熔点最高的金属还要高,如钨和钌。虽然碳能够进行氧化反应,但它的耐氧化性比铁和铜等元素都强。碳化合物是地球上所有生物的化学基础。碳氮氧循环反应是太阳以及其他恒星内部部分能量的来源。虽然碳拥有上千万种化合物,但碳在一般条件下的化学性质并不活跃。在标准温度和压力下,碳能够抵抗几乎所有的氧化剂,并只会与最强的氧化剂反应。无论是硫酸、盐酸、氯还是...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信