族谱网 头条 人物百科

条件概率

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:528
转发:0
评论:0
定义设A与B为样本空间Ω中的两个事件,其中P(B)>0。那么在事件B发生的条件下,事件A发生的条件概率为:条件概率有时候也称为:后验概率。统计独立性当且仅当两个随机事件A与B满足的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。同样,对于两个独立事件A与B有以及换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。互斥性当且仅当A与B满足且的时候,A与B是互斥的。因此,换句话说,如果B已经发生,由于A不能和B在同一场合下发生,那么A发生的概率为零;同样,如果A已经发生,那么B发生的概率为零。其它如果事件B{\displaystyleB}的概率P(B)>0{\displaystyleP(B)>0},那么Q(A)=P(A|B){\displaystyleQ(A)=P(A|B)}在所有事件A{\dis...

定义

设 A 与 B 为样本空间 Ω 中的两个事件,其中 P ( B )>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:

条件概率有时候也称为:后验概率。

统计独立性

当且仅当两个随机事件 A 与 B 满足

的时候,它们才是统计独立的,这样联合概率可以表示为各自概率的简单乘积。

同样,对于两个独立事件 A 与 B 有

以及

换句话说,如果 A 与 B 是相互独立的,那么 A 在 B 这个前提下的条件概率就是 A 自身的概率;同样, B 在 A 的前提下的条件概率就是 B 自身的概率。

互斥性

当且仅当 A 与 B 满足

的时候, A 与 B 是互斥的。

因此,

换句话说,如果 B 已经发生,由于 A 不能和 B 在同一场合下发生,那么 A 发生的概率为零;同样,如果 A 已经发生,那么 B 发生的概率为零。

其它

如果事件 B {\displaystyle B} 的概率 P ( B ) > 0 {\displaystyle P(B)>0} ,那么 Q ( A ) = P ( A | B ) {\displaystyle Q(A)=P(A|B)} 在所有事件 A {\displaystyle A} 上所定义的函数 Q {\displaystyle Q} 就是概率测度。

如果 P ( B ) = 0 {\displaystyle P(B)=0} , P ( A | B ) {\displaystyle P(A|B)} 没有定义。

条件概率可以用决策树进行计算。

形式定义

考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为P X ;又A∈σ(S),P X (A)≥0(这里可以理解为事件A,A不是零测集)。则∀E∈σ(S),可以定义集函数P X|A 如下:

P X|A (E)=P X (A∩E)/P X (E)。

易知P X|A 也是Ω上的概率测度,此测度称为 X在A下的条件测度 (条件概率分布)。

独立性 :设A,B∈σ(S),称A,B在概率测度P下为相互 独立的 ,若P(A∩E)=P(A)P(E)。

条件概率谬论

条件概率的谬论是假设 P ( A | B )大致等于 P ( B | A )。数学家John Allen Paulos在他的《数学盲》一书中指出医生、律师以及其他受过很好教育的非统计学家经常会犯这样的错误。这种错误可以通过用实数而不是概率来描述数据的方法来避免。

P ( A | B )与 P ( B | A )的关系如下所示:

下面是一个虚构但写实的例子, P ( A | B )与 P ( B | A )的差距可能令人惊讶,同时也相当明显。

若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

这个问题的重要性,最适合用条件概率的观点来解释。

假设人群中有1%的人罹患此疾病,而其他人是健康的。我们随机选出任一个体,并将患病以disease、健康以well表示:

假设检验动作实施在未患病的人身上时,有1%的概率其结果为假阳性(阳性以positive表示)。意即:

最后,假设检验动作实施在患病的人身上时,有1%的概率其结果为假阴性(阴性以negative表示)。意即:

现在,由计算可知:

是整群人中健康、且测定为阴性者的比率。

是整群人中得病、且测定为阳性者的比率。

是整群人中被测定为假阳性者的比率。

是整群人中被测定为假阴性者的比率。

进一步得出:

是整群人中被测出为阳性者的比率。

是某人被测出为阳性时,实际上真的得了病的概率。

这个例子里面,我们很轻易可以看出P(positive|disease)=99%与P(disease|positive)=50%的差距:前者是你得了病,而被检出为阳性的条件概率;后者是你被检出为阳性,而你实际上真得了病的条件概率。由我们在本例中所选的数字,最终结果可能令人难以接受:被测定为阳性者,其中的半数实际上是假阳性。

参见

贝叶斯定理

最大似然函数

后验概率

概率论

Monty Hall problem

Prosecutor"s fallacy

条件期望


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 概率
历史第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作LiberdeLudoAleae中。书中关于概率的内容是由Gould从拉丁文翻译出来的。Cardano的数学著作中有很多给赌徒的建议。这些建议都写成短文。例如:《谁,在什么时候,应该赌博?》、《为什么亚里士多德谴责赌博?》、《那些教别人赌博的人是否也擅长赌博呢?》等。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由ChevalierdeMéré提出的问题。ChevalierdeMéré是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰问题和比赛奖金应分配问题。概念在日常生活中,我们常常会遇到一些涉及可能性或发生机会等概念的事件(event)。一个事件的可能性或一个事件的发生机会是与数学有关的。例如:“从一班40名学生中随意选出一人,这...
· 概率幅
参阅概率流薛定谔方程量子态玻恩定则
· 概率公理
柯尔莫果洛夫公理假设我们有一个基础集ΩΩ-->{\displaystyle\Omega},其子集的集合F{\displaystyle{\mathfrak{F}}}为σ代数,和一个给F{\displaystyle{\mathfrak{F}}}的元素指定一个实数的函数P{\displaystyleP}。F{\displaystyle{\mathfrak{F}}}的元素是ΩΩ-->{\displaystyle\Omega}的事件,称为“事件”。第一公理即,任一事件的概率都可以用0{\displaystyle0}到1{\displaystyle1}区间上的一个实数来表示。第二公理即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。第三公理...
· 概率论
生活例子人们对概率总是有一点触摸不清的感觉,而事实上也有很多看似奇异的结果:1;六合彩:在六合彩(49选6)中,一共有13,983,816种可能性(参阅组合数学),如果每周都买一组不相同的号,一年有52周,则在实验越多次(一直买直到中奖算一次)之后,平均中奖所花的时间会越接近1398381652=268919{\displaystyle{\frac{13983816}{52}}=268919}。事实上,即使每周买相同的号,获得头奖的概率也是相同的。但假设每周实际中奖的组合都不重复,268919年的算术推论是正确的,这说明概率和其他数学理论可能导出不同的结论。2;六合彩:仍然是六合彩。买5,17,19,24,33,49中奖概率高还是买1,2,3,4,5,6的中奖概率高?古典概率论说:一样。但实际上机械或彩球制造上都有些微小的差异,所以每组概率不一定完全相同,但必须累积多期开奖结果后才看得出来...
· 概率空间
定义概率空间(Ω,F,P)是一个总测度为1的测度空间(即P(Ω)=1).第一项Ω是一个非空集合,有时称作“样本空间”。Ω的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数:ΦΦ-->∈∈-->F{\displaystyle\Phi{\in}{\mathcal{F}}};若A∈∈-->F{\displaystyleA{\in}{\mathcal{F}}},则A¯¯-->∈∈-->F{\displaystyle{\bar{A}}{\in}{\mathcal{F}}};若An∈∈-->F{\displaystyleA_{n}{\in}{\mathcal{F}}},n=1,2,...{\displaystylen=1,2,...},则⋃⋃-->n=1∞∞-->An∈∈-->F{\displays...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信