族谱网 头条 人物百科

投影

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:594
转发:0
评论:0
定义投影的严格定义是:一个从向量空间V射到它自身的线性变换P是投影,当且仅当P2=P{displaystyleP^{2}=P}。另外一个定义则较为直观:P是投影,当且仅当存在V的一个子空间W,使得P将所有V中的元素都映射到W中,而且P在W上是恒等变换。用数学的语言描述,就是:简单例子在现实生活中,

定义

投影的严格定义是:一个从向量空间V射到它自身的线性变换 P 是投影,当且仅当P2=P{\displaystyle P^{2}=P}。另外一个定义则较为直观:P 是投影,当且仅当存在V的一个子空间W,使得 P 将所有V中的元素都映射到W中,而且 P 在W上是恒等变换。用数学的语言描述,就是:

简单例子

在现实生活中,阳光在地面上留下各种影子。这就是投影变换最直白的例子。可以理想化地假设阳光都是沿着同一个方向(比如说垂直于地面的角度)照射而来,大地是严格的平面,那么,对于任意一个物体(比如说一只正在飞行的鸟),它的位置可以用向量 (x, y, z) 来表示,而这只鸟在阳光下对应着一个影子,也就是 (x, y, 0)。这样的一个变换就是一个投影变换。它将三维空间中的向量 (x, y, z) 到映射到向量 (x, y, 0) 。这是在 x-y 平面上的投影。这个变换可以用矩阵表示为

因为对任意一个向量 (x, y, z) ,这个矩阵的作用是:

注意到如果一个向量原来就是表示地面上的一点的话(也就是说它的z分量等于0),那么经过变换 P 后不会有改变。也就是说这个变换在子空间 x-y 平面上是恒等变换,这证明了 P 的确是一个投影。

另外,

所以 P = P,这也证明 P 的确是投影。

基本性质

投影

变换 T 是沿着 k 方向到直线 m 上的投影。T 的像空间是 m 而零空间是 k。

这里假定投影所在的向量空间V是有限维的(因此不需要考虑如投影的连续性之类的问题)。假设子空间U与W分别为 P 的像空间与零空间(也叫做核)。那么按照定义,有如下的基本性质:

P 在像空间U上是恒等变换:∀ ∀ -->v∈ ∈ -->U,P(v)=v{\displaystyle \forall v\in U,\quad P(v)=v}

整个向量空间可以分解成子空间U与W的直和:V=U⊕ ⊕ -->W{\displaystyle V=U\oplus W}。也就是说,空间里的每一个向量v{\displaystyle v},都可以以唯一的方式写成两个向量u{\displaystyle u}与w{\displaystyle w}的和:v=u+w{\displaystyle v=u+w},并且满足u∈ ∈ -->U{\displaystyle u\in U}、w∈ ∈ -->W{\displaystyle w\in W}。事实上,每一个向量v{\displaystyle v}都可以写成v=P(v)+(v− − -->P(v)){\displaystyle v=P(v)+\left(v-P(v)\right)}。P(v){\displaystyle P(v)}显然在像空间中,而另一方面P(v− − -->P(v))=P(v)− − -->P2(v)=0{\displaystyle P\left(v-P(v)\right)=P(v)-P^{2}(v)=0},所以v− − -->P(v){\displaystyle v-P(v)}在零空间中。

用抽象代数的术语来说,投影 P 是幂等的线性变换(P = P)。因此它的极小多项式是X2− − -->X=X(X− − -->1){\displaystyle X^{2}-X=X(X-1)}。因式分解后可以看到,这个多项式只有相异的单根(没有多重根),因此 P 是可对角化矩阵。极小多项式也显示出了投影的特性: 像空间与零空间分别是是对应于特征值1和0的特征空间,并给出了整个空间的一个直和分解。

正如日常生活中阳光沿着一定的方向将影子投射到地面上,一般的投影变换也可以称为是沿着W到U上的投影。由于向量空间分解成直和的方式一般不是唯一的(阳光可以顺着不同的方向照射),给定一个子空间 V(地面),一般的说有很多到V 的投影(沿不同的W)。

正交投影

如果向量空间被赋予了内积,那么就可以定义正交和其它相关的概念(比如线性算子的自伴随性)了。在内积空间(赋予了内积的向量空间)中,有正交投影的概念。具体来说,正交投影是指像空间U和零空间W相互正交子空间的投影。也就是说,任意u∈ ∈ -->U{\displaystyle u\in U},w∈ ∈ -->W{\displaystyle w\in W},它们的内积(u|w){\displaystyle (u|w)}都等于0。 一个投影是正交投影,当且仅当它是自伴随的变换,这意味着正交投影的矩阵有特殊的性质。如果投影是在实向量空间中,那么它对称的矩阵是对称矩阵: P=PT{\displaystyle P=P^{T}}。如果投影是在虚向量空间中,那么它的矩阵则是埃尔米特矩阵:P=P∗ ∗ -->{\displaystyle P=P^{*}}。实际上,如果投影 P{\displaystyle P} 是自伴算子,那么

所以 P{\displaystyle P} 是正交投影。反过来如果 P{\displaystyle P} 是正交投影,那么 ∀ ∀ -->u=P(v)∈ ∈ -->U,w∈ ∈ -->W,(u|w)=0{\displaystyle \forall u=P(v)\in U,\,w\in W,\quad (u|w)=0},

鉴于 v1,v2{\displaystyle v_{1},\,v_{2}} 是任取的,必然有 P∗ ∗ -->− − -->P∗ ∗ -->P=0{\displaystyle P^{*}-P^{*}P=0}。所以 P∗ ∗ -->=P∗ ∗ -->P{\displaystyle P^{*}=P^{*}P} 是一个自伴算子,因此 P{\displaystyle P} 也是自伴算子。

例子

正交投影的最简单的情况是到(过原点)直线上的正交投影。如果 u 是这条直线的单位方向向量,则投影给出为

这个算子保留 u 不变(Pu(u)=uu∗ ∗ -->u=u∥ ∥ -->u∥ ∥ -->2=u{\displaystyle P_{u}(u)=uu^{*}u=u\|u\|^{2}=u}),并且它作用在所有正交于 u 的向量上都是0(如果(u|v)=0{\displaystyle (u|v)=0},那么 Pu(v)=uu∗ ∗ -->v=u(u|v)=0{\displaystyle P_{u}(v)=uu^{*}v=u(u|v)=0}),证明它的确是到包含 u 的直线上的正交投影。

这个公式可以推广至到在任意维的子空间上的正交投影。设 u1, …, uk 是子空间 U 的一组正交基,并设 A 为一个n×k 的矩阵,它的列向量是 u1, …, uk。那么投影:

也是正交的。矩阵 A 是在 U 的正交补变为零的偏等距同构,而 A 是把 U 嵌入底层向量空间的等距同构。PA 的值域因此是 A 的“终空间”(final space)。AA 是在 U 上的恒等算子也是明显的。

正交条件也可以去除。如果 u1, …, uk 是(不必须正交)基,而 A 是有这些向量作为列的矩阵,则投影是

矩阵 A 仍把 U 嵌入到低层向量空间中但一般不再是等距的。矩阵 (AA) 是恢复规范的“规范化因子”。例如,秩-1 算子 uu 不是投影,如果 ||u|| ≠ 1。在除以 uu = \|u\| 之后,我们得获得了到 u 所生成的子空间的投影 u(uu)u。

所有这些公式对于复数内积空间也成立,假如用共轭转置替代转置。

斜投影

术语斜投影有时用来提及非正交投影。这些投影也用来在二维绘图中表示空间图形(参见斜投影),尽管不如正交投影常用。

斜投影用它们的值域和零空间来定义。有给定值域和零空间的投影的矩阵表示的公式可如下这样找到。设向量 u1, …, uk 形成了投影的值域的基,并把这些向量组合到 n×k 矩阵 A 中。值域和零空间是互补空间,所以零空间有维度 n − k。它推出零空间的正交补有维度 k。设 v1, …, vk 形成这个投影的零空间的正交补的基,并把这些向量组合到矩阵 B 中。则投影定义为

这个表达式一般化上面给出的正交投影公式。

在赋范向量空间上的投影

当底层向量空间 X 是(不必需有限维)赋范向量空间,需要考虑无关于有限维情况的分析问题,假定现在 X 是巴拿赫空间。

上面讨论的多数代数概念转移到这个上下文后幸存下来了。给定的 X 的直和分解成补子空间仍指定一个投影,反之亦然。如果 X 是直和 X = U ⊕ V,则定义自 P(u + v) = u 的算子仍是有值域 U 和核 V 的投影。明显的也 P = P。反过来说,如果 P 是在 X 上的投影,就是说 P = P,则很容易验证 (I − P) = (I − P)。换句话说,(I − P) 也是投影。关系 I = P + (I − P) 蕴涵了 X 是直和 Ran(P) ⊕ Ran(I − P)。

但是相对于有限维情况,投影一般不必须是连续的。如果 X 的子空间 U 在规范拓扑下不闭合,则到 U 上的投影是不连续的。换句话说,连续投影 P 的值域一定是闭合子空间。进一步的,连续投影(事实上,一般的连续线性算子)的核是闭合的。所以连续投影 P 把 X 分解成两个互补的闭合子空间: X = Ran(P) ⊕ Ker(P) = Ran(P) ⊕ Ran(I − P)。

反命题在有额外假定条件下也成立。假设 U 是 X 的闭合子空间。如果存在一个闭合子空间 V 使得 X = U ⊕ V,则有值域 U 和核 V 的投影 P 是连续的。这是从闭合图定理推出的。假定 xn → x 而 Pxn → y。需要证明 Px = y。因为 U 是闭合的且 {Pxn} ⊂ U, y 位于 U 中,就是说 Py = y。还有 xn − Pxn = (I − P)xn → x − y。因为 V 是闭合的且 {(I − P)xn} ⊂ V,我们有了 x − y ∈ V,就是说 P(x − y) = Px − Py = Px − y = 0,这证明了这个断言。

上述论证利用 U 和 V 都是闭合的假定。一般的说,给定一个闭合子空间 U, 不需要存在一个互补的闭合子空间 V,尽管对于希尔伯特空间总是可以采取正交补得到。对于巴拿赫空间,一维子空间总是有闭合的补子空间。这是哈恩-巴拿赫定理的直接推论。设 U 是 u 的线性扩张。通过哈恩-巴拿赫定理,存在一个有界线性泛函 φ,使得 φ(u) = 1。算子 P(x) = φ(x)u 满足 P = P,就是说它是个投影。φ 的有界性蕴涵了 P 的连续性,因此 Ker(P) = Ran(I − P) 是 U 的闭合补子空间。

参见

中心矩阵,它是投影矩阵的例子。

正交化

不变子空间

透视投影

引用

N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience, 1958.

Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, 2000. ISBN 978-0-89871-454-8.


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 哈沃斯投影式
参见费歇尔投影式纽曼式-锯架式-键线式参考文献InternationalUnionofPureandAppliedChemistry."Haworthrepresentation".CompendiumofChemicalTerminologyInternetedition.
· 地图投影
投影变形经过投影变形后的世界地图,注意南北极的形状都已经拉长可以用椭圆来说明地图投影的变形在使用投影时,可以在平面与球面之间建立相对应函数关系,但是经过投影后的平面并不能保持球面上的长度、角度和面积的原形。所以经过投影的地图只能在长度、角度和面积之中的一项不变形,而其他几种变形,只能是变形值相对较小。通常引进一个椭圆来说明地图投影的变形。在地面上取一个极小的微分圆(面积可以忽略,因此可以看成一个平面),投影变形后将成为一个椭圆,这个椭圆称作“变形椭圆”。利用这个椭圆,可以检验地图投影的变形性质和大小。长度变形:可以使用长度比μ来表示。长度比是指地面上的微分线段经过投影后的长度与原有长度的比值。值得注意的是,这与比例尺并非一个概念。长度比是一个变量,它随着在地图上位置的变化而变化。面积变形:可以使用面积比Ρ来表示。面积比是指地面上的微分面积经过投影后的大小与原有大小的比值。面积比也是一个变量...
· 三维投影
分类平面几何投影正交投影正交投影是一系列用于显示三维物体的轮廓、细节或精确测量结果的变换方法。通常又被称作plan、截面图、鸟瞰图或立面图。当视平面的法向(即摄像机的朝向)平行于笛卡尔坐标系三根坐标轴中的一根,数学变换定义如下:若使用一个平行于y轴(侧视图)的正交投影将三维点ax{\displaystylea_{x}},ay{\displaystylea_{y}},az{\displaystylea_{z}}投影到二维平面上得到二维点bx{\displaystyleb_{x}},by{\displaystyleb_{y}},可以使用如下公式其中向量s是一个任意的缩放因子,而c是一个任意的偏移量。这些常量可自由选择,通常用于将视口调整到一个合适的位置。该投影变换同样可以使用矩阵表示(为清晰起见引入临时向量d)虽然正交投影产生的图像在一定程度上反映了物体的三维特性,但此类投影图像和实际观测到的...
· 费歇尔投影式
用途费歇尔投影在生物化学与有机化学中常用于表示单糖。也可用于表示氨基酸等有机分子。由于费歇尔投影描述了分子的立体结构,非常适合表示手性分子的对映异构体。参见顺序规则椅型构象纽曼式-伞形式-锯架式-键线式哈沃斯透视式参考资料^JohnMcMurry.OrganicChemistry7thedition.Brooks/Cole-ThomsonLearning,Inc.2008:975.引文格式1维护:冗余文本(link)^Sugars&Polysaccharides.RensselaerPolytechnicInstitute(RPI).[2011-07-10].^Graphicalrepresentationofstereochemicalconfiguration(IUPACRecommendations2006),p.1933-1934^Cieplak,T.andJ.L.Wisniews...
· 透视投影
参见绘画中的透视绘图。照片可以自动地表现照相机处看到的透视投影。艺术家根据照片就可以绘制出正确的透视投影场景。如果所要绘制的图像与照片尺寸不同,则需要对照片进行正确的缩放。这可以很容易地通过比例规来实现。透视投影失真透视透视失真三维投影

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信