族谱网 头条 人物百科

空间对称群

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:219
转发:0
评论:0
一维其在等同构下之图像的点皆为拓扑闭合之一维等距同构群有:当然群C1由一点之镜射所产生之元素所组成的群;其同构于C2由平移所产生之无限离散群:其同构于Z由平移和一点的镜射所产生之无限离散群:其同构于Z的广义二面体群Dih(Z),亦被标记为D∞(其为Z与C2的半直积)。由所有平移(同构于R)所产生的群;这个群不能是某一“图像”的对称群:它会是均匀的,因此亦能被镜面。但一个均匀一维向量场则可以有这种对称群。由所以平移和一点之镜射所组成的群:其同构于R的广义二面体群Dih(R)。另见一维对称群。二维以共轭来分,二维离散点群可以分成下列几种类型:C1、C2、C3、C4、…等循环群,其中Cn包含着所有绕一固定点为360/n度的整倍数之旋转。D1、D2、D3、D4、…等二面体群,其中Dn包含着所有在Cn中的旋转和n个通过其固定点之轴的镜射。C1是一个只包含有恒等运算的当然群,其产生于一图像没有任何的对...

一维

其在等同构下之图像的点皆为拓扑闭合之一维等距同构群有:

当然群C1

由一点之镜射所产生之元素所组成的群;其同构于C2

由平移所产生之无限离散群:其同构于Z

由平移和一点的镜射所产生之无限离散群:其同构于Z的广义二面体群Dih(Z),亦被标记为D∞(其为Z与C2的半直积)。

由所有平移(同构于R)所产生的群;这个群不能是某一“图像”的对称群:它会是均匀的,因此亦能被镜面。但一个均匀一维向量场则可以有这种对称群。

由所以平移和一点之镜射所组成的群:其同构于R的广义二面体群Dih(R)。

另见一维对称群。

二维

以共轭来分,二维离散点群可以分成下列几种类型:

C1、C2、C3、C4、…等循环群,其中Cn包含着所有绕一固定点为360/n度的整倍数之旋转。

D1、D2、D3、D4、…等二面体群,其中Dn包含着所有在Cn中的旋转和n个通过其固定点之轴的镜射。

C1是一个只包含有恒等运算的当然群,其产生于一图像没有任何的对称时,如字母F。C2为字母Z的对称群,C3为三曲腿图的,C4为卐的,而C5、C6则为有五条及六条臂之类卐图像。

D1为一个含有恒等运算和单一个镜射之两个元素的群,其产生于一尽有一对称轴的图像中,如字母A。D2(同构于克莱因四元群)为一非等边长方形的对称群,而D3、D4则为正多边形的对称群。

两种类型的实际对称群对其旋转中心都有着两个自由度,而在二面体群中,多著一个镜面方位的自由度。

剩余具有不动点之二维等距同构群,其所有在等距同构下之图像的点皆为拓扑闭合的有:

特殊正交群SO(2),其包括绕着一固定点的所有旋转;其亦称为圆群S,为绝对值为1之复数所组成的乘法群。其为圆的“纯”对称群,且为Cn在连续群中的等价。不存在一以圆群为“全”对称群之图像,但对于一向量场则存在着(见三维中的例子)。

正交群O(2),其包括所有绕一固定点的旋转及对通过其固定点之轴的镜射。这是一个圆的对称群。其亦被可标记为Dih(S),因其为S的广义二面体群。

对于无界图像,其他的等距同构群还包括平移;其闭合对称群有:

7个彩带群

17个壁纸群

对每一个一维对称群,其于一方向上之群的所有对称及在其垂直方向上之所有平移的群所组成之对称群

同上,但再加上第一个方向的镜射

三维

以共轭来分,其三维点群的集合包括7种包含无限多个群的类型和剩下的7个点群。在晶格学中,其被局限在需符合晶格的离散平移对称中。一般无限个点群中的晶体局限可以找出32种晶体点群(27种在7种类型中,5种在另7个点群中)。

见三维点群。

具一固定点的连续对称群包括如下:

没有垂直其轴之对称面的圆柱对称,这出现在如瓶子等物之上头

有垂直其轴之对称面的圆柱对称

球面对称

对物件和标量场而言,圆柱对称意指其有着直立镜射面。但对向量场则不然:在相对于某一轴的圆柱座标中, A=Aρ ρ -->ρ ρ -->^ ^ -->+Aϕ ϕ -->ϕ ϕ -->^ ^ -->+Azz^ ^ -->{\displaystyle \mathbf {A} =A_{\rho }{\boldsymbol {\hat {\rho }}}+A_{\phi }{\boldsymbol {\hat {\phi }}}+A_{z}{\boldsymbol {\hat {z}}}} 有相对于此一轴的圆柱对称当且仅当Aρ ρ -->{\displaystyle A_{\rho }}、Aϕ ϕ -->{\displaystyle A_{\phi }}和Az{\displaystyle A_{z}}都有此一对称,即其都和φ无关。另外地,其存在着镜射对称当且仅当Aφ=0。

对于球面对称,则不存在着如此差异,其皆意指著有镜射面。

没有固定点的连续对称群则包括具有如无限螺旋之螺旋轴对称的对称群。另见欧几里得群的子群。

一般对称群

在更广义的文句中,对称群可能为任一种类的变换群或自同构群。一旦知道了所关注的数学结构之种类,应该就够确定保留其结构之映射。相反地,知道其对称即可定义其结构,或至少能弄清其内之不变量;这是看爱尔兰根纲领的一种方式。

例如,有限几何某些模型的自同构群在一般意思下不是“对称群”,尽管其亦会保留对称性。其保留着点集族,而非点集(或“物件”)本身。见pattern groups。

如上面所述,空间自同构的群会形成一于其内物件之群作用。

对于一给定之几何空间内的一给定之几何形状,考虑如下之等价关系:两个空间自同构为等价的当且仅当两个形状的图样是相同的(此处所谓之“相同”并非为“在平移和旋转下是相同”的意思,而是指“精确地相同”)。然后,此一相同之等价类即为此形状的对称群,且每一等价类皆会对应到一个此形状的同构版本。

在每一对等价类之间都存在着一个双射:第一个等价类之代表的逆元素与第二个等价类之代表复合。

在整个空间的一有限自同构群里,其目为形状之对称群的目乘上此形状同构版本的数目。

例如:

欧几里得空间的等距同构,其形状为长方形:其存在着无限多个等价类;每一个等价类都包括4个等距同构。

空间为具欧几里得度量的立方体;形状包括和此空间同样大小的立方体,其各面有着各式颜色或图像;此一空间的自同构为48个等距同构;其状形为各面有着不同颜色之立方体;此形状会有着8个等距同构的对称群,及6个各含8个等距同构的等价类,每个等价类都是此形状的一个同构版本。

比较拉格朗日定理 (群论)及其证明。

另见

对称

一维对称群

置换群

欧几里得空间中等距同构群的不动点

欧几里得等距

群作用

点群

晶系

空间群


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 对称群
有限置换群各种置换群中,有限集合上的置换群有着特殊的重要性。称X上的对称群是Sn。X上所有的排列构成了全部一一映射的集合,因此,Sn有n!个元素。对n>2,Sn阿贝尔群贝尔群。当且仅当n≤4时,Sn是可解群。对称群的子群称为置换群(en:permutationgroup)。置换的乘积对称群中,两个置换的乘积就是作为双射的复合,只不过省略了符号"o"。例如:f与g的复合应先适用g,其后适用f。那么,1将首先被变换成2然后再由2指向它自己;2被变换成5,然后被变换成4;3被变换成4,然后由4变成5,如此类推。所以,f乘以g是:容易证明长度为L=k·m的轮换,的k次方会分解为k个长度为m的轮换。比如:对换对换指只交换集合中的两个元素而使其他元素仍变换到自身的置换,例如(13)。每个置换都能写成一系列对换的乘积。比如上例中的g=(12)(25)(34)。由于g能被写成奇数个对换的乘积,g是一个奇置...
· 对称
对称的数学模型于一集合X内的所有物件上,所考量的所有对称运算都可以模拟成一个群作用a:G×X→X,其在G内的g及在X内的x所映射出的值可以写成g·x。若存在某些g使得g·x=y,则称x及y为相互对称的。对于任一个物件x,会有g·x=x的运算g可以组成一个群,其称为此物件的对称群,为G之子群。若x的对称群为当然群,则x称为不对称的,不然即称为对称的。一普通的例子为,设G为一作用在一群函数x:V→W上的双射g:V→V所组成的群,其作用为(gx)(v)=x(g(v))(即封闭在群作用下之此一函数的限制集合)。因此,空间之双射所组成的群会导致一在其空间内的“物件”上之群作用。x的对称群包含有所有可使所有V内的v,x(v)=x(g(v))的g。G为全空间都一致的物件之对称群。某些G的子群可能不会为任何一个物件的对称群。例如,若一包含有于V内可使得g(v)=w的v和w,则只会有常数函数x的对称群会包含...
· 超对称
理论超对称代数:历史参见中子电偶极矩最小超对称标准模型超弦理论
· 对称性
守恒定律与对称性的关系物理系统的每一个对称性都有相对的守恒定律。诺特定理就是概括这关系的重要定理。它指出物理系统包含的每一个对称性都代表此系统有某相对的物理量守恒。反过来说:物理系统有某守恒性质就代表它带其相对的对称性。例如,空间位移对称造成动量守恒,而时间平移对称造成能量守恒。以下列表总结各对称和相对的守恒量:参阅手征对称性破缺明显对称性破缺
· 对称矩阵
例子(abcbdecef),(130316061),(1557),(2){\displaystyle{\begin{pmatrix}a&b&c\\b&d&e\\c&e&f\end{pmatrix}},{\begin{pmatrix}1&3&0\\3&1&6\\0&6&1\end{pmatrix}},{\begin{pmatrix}1&5\\5&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}特性对于任何方形矩阵X{\displaystyleX},X+XT{\displaystyleX+X^{T}}是对称矩阵。A{\displaystyleA}为方形矩阵是A{\displaystyleA}为对称矩阵的必要条件。对角矩阵都是对称矩阵。两...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信