族谱网 头条 人物百科

矩阵群

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:729
转发:0
评论:0
基本例子在一个交换环R上n×n矩阵集合MR(n,n)在矩阵加法与乘法下自身是一个环。MR(n,n)的单位群称为在环R上n×n矩阵

基本例子

在一个交换环 R 上 n × n 矩阵集合 MR(n,n) 在矩阵加法与乘法下自身是一个环。 MR(n,n) 的单位群称为在环 R 上 n × n 矩阵的一般线性群,记作 GLn(R) 或 GL(n,R)。所有矩阵群是某个一般线性群的子群。

典型群

某些特别有趣的矩阵群是所谓的典型群。当矩阵群的系数环是实数,这些群是典型李群。当底环是一个有限域,典型群是李型群。这些群在有限单群分类中起着重要的作用。

有限群作为矩阵群

任何有限群同构于某个矩阵群。这类似于凯莱定理说每个有限群同构于某个置换群。因为同构性质是传递的,我们只需考虑怎样从一个置换群构造一个矩阵群。

令 G 是在 n点 (Ω = {1,2,…,n}) 上的置换群,设 {g1,...,gk} 是 G 的一个生成集合。复数上 n×n 矩阵的一般线性群 GLn(C) 自然作用在向量空间 C 上。设 B={b1,…,bn} 是 C 的标准基。对每个 gi 令 Mi 属于 GLn(C) 是将每个 bj 送到 bgi(j) 的一个矩阵。这就是如果置换 gi 将点 j 送到 k 则 Mi 将基向量 bj 送到 bk。 令 M 是 GLn(C) 中由 {M1,…,Mk} 生成的子群。G 在 Ω 上的作用恰好与 M 在 B 上的作用相同。可以证明将每个 gi 送到 Mi 的函数扩张成一个同构,这样每个置换群同构于一个子群。

注意到域(上面用的是 C)是无关的,因为 M 包含的元素矩阵分量只是 0 或 1。容易对任意域可做同样的构造,因为元素 0 和 1 在每个域中。

举一例,令 G = S3,3 个点的对称群。设 g1 = (1,2,3) 和 g2 = (1,2),则

注意到 M1b1 = b2,M1b2 = b3 以及 M1b3 = b1。类似地,M2b1 = b2,M2b2 = b1 以及 M2b3 = b3。

表示论与特征标理论

线性变换与矩阵(一般地说)在数学中已被充分理解,在群的研究中被广泛使用。特别是表示论研究从一个群到一个矩阵群的同态与特征标理论研究从一个群到由一个表示的迹给出的一个域的同态。

例子

李群列表(en:table of Lie groups),有限单群列表(list of finite simple groups),以及单李群列表(list of simple Lie groups)中有许多例子。

参见传递有限群列表(list of transitive finite linear groups)。

参考文献

Brian C. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, t edition, Springer, 2006. ISBN 0-387-40122-9

Wulf Rossmann, Lie Groups: An Introduction Through Linear Groups (Oxford Graduate Texts in Mathematics), Oxford University Press ISBN 0-19-859683-9.

La géométrie des groupes classiques, J. Dieudonné. Springer, 1955. ISBN 1-114-75188-X

The classical groups, H. Weyl, ISBN 0-691-05756-7


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 矩阵
发展作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,已经出现过以矩阵形式表示线性方程组系数以解方程的图例,可算作是矩阵的雏形。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。阿瑟·凯莱被认为是矩阵论的奠基人进入十九世纪后,行列式的研究进一步发展,矩阵的概念也应运而生。奥古斯丁·路易·柯西是最早将行列式排成方阵并将其元素用双重下标表示的数学家。他还在1829年就在行列式的框架中证明了实对称矩阵特征根为实数的结论。其后,詹姆斯·约瑟夫·西尔维斯特注意到,在作为行列式的计算形式以外,将数...
· 变换矩阵
应用任意线性变换都可以用矩阵表示为易于计算的一致形式,并且多个变换也可以很容易地通过矩阵的相乘连接在一起。线性变换不是唯一可以用矩阵表示的变换。R维的仿射变换与透视投影都可以用齐次坐标表示为RP维(即n+1维的真实投影空间)的线性变换。因此,在三维计算机图形学中大量使用着4x4的矩阵变换。寻找变换矩阵如果已经有一个函数型的线性变换T(x){\displaystyleT(x)},那么通过T对标准基每个向量进行简单变换,然后将结果插入矩阵的列中,这样很容易就可以确定变换矩阵A,即例如,函数T(x)=5x{\displaystyleT(x)=5x}是线性变换,通过上面的过程得到(假设n=2)在二维图形中的应用示例最为常用的几何变换都是线性变换,这包括旋转、缩放、切变、反射以及正投影。在二维空间中,线性变换可以用2×2的变换矩阵表示。旋转绕原点逆时针旋转θ度角的变换公式是x′=xcos⁡⁡-->θ...
· 对角矩阵
例子(a000b000c),(100020000),(1007),(2){\displaystyle{\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}},{\begin{pmatrix}1&0&0\\0&2&0\\0&0&0\end{pmatrix}},{\begin{pmatrix}1&0\\0&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}均为对角矩阵矩阵运算[a1a2⋱⋱-->an]+[b1b2⋱⋱-->bn]=[a1+b1a2+b2⋱⋱-->an+bn]{\displaystyle{\begin{bmatrix}a_{1}&&&\\&a...
· 对称矩阵
例子(abcbdecef),(130316061),(1557),(2){\displaystyle{\begin{pmatrix}a&b&c\\b&d&e\\c&e&f\end{pmatrix}},{\begin{pmatrix}1&3&0\\3&1&6\\0&6&1\end{pmatrix}},{\begin{pmatrix}1&5\\5&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}特性对于任何方形矩阵X{\displaystyleX},X+XT{\displaystyleX+X^{T}}是对称矩阵。A{\displaystyleA}为方形矩阵是A{\displaystyleA}为对称矩阵的必要条件。对角矩阵都是对称矩阵。两...
· 辛矩阵
性质凡辛矩阵皆可逆,其逆矩阵可表为因此,辛矩阵具有如下运算性质:此外,辛矩阵构成的集合在矩阵乘法下封闭,因此一个域F{\displaystyleF}上的所有2n{\displaystyle2n}阶辛矩阵构成一个群,记为Sp(2n,F){\displaystyle\mathrm{Sp}(2n,F)}。事实上它是GL(2n,F){\displaystyle\mathrm{GL}(2n,F)}的闭代数子群,其维度为n(2n+1){\displaystylen(2n+1)}。当F=R,C{\displaystyleF=\mathbb{R},\mathbb{C}}时,Sp(2n,F){\displaystyle\mathrm{Sp}(2n,F)}带有自然的(复)李群结构。由定义可知辛矩阵的行列式等于±±-->1{\displaystyle\pm1};事实上,可以利用...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信