族谱网 头条 人物百科

代数逻辑

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:286
转发:0
评论:0
逻辑作为代数构成的模型代数逻辑把逻辑当作特定代数结构构成的模型(解释、释义),特别是作为格构成的模型,并因而是序理论的分支。在代数逻辑中:变量默许的全称量化于某个论域之上。这里没有存在量化变量或开放公式;项使用基本和定义的运算从变量建造。这里没有连结词;公式用通常方式从项建造,并且如果它们逻辑等价则可以写成等式。要表达重言式,写一个公式等于真值真;证明的规则是对相等者的等式代换,和一致替换。肯定前件仍然有效,但很少采用。在下表中,左列包含一个或多个逻辑或数学系统,它是在右列展示的代数结构构成的模型。这些结构要么是布尔代数要么是它的严格扩展。模态逻辑和其他非经典逻辑典型是“带有算子的布尔代数”所构成的模型。代数形式主义在至少以下方面超越了一阶逻辑:组合子逻辑,有集合论的表达能力;关系代数,可论证为典范代数逻辑,它可以表达皮亚诺算术和多数公理化集合论,包括正规的ZFC。历史代数逻辑有至少两种意

逻辑作为代数构成的模型

代数逻辑把逻辑当作特定代数结构构成的模型(解释、释义),特别是作为格构成的模型,并因而是序理论的分支。

在代数逻辑中:

变量默许的全称量化于某个论域之上。这里没有存在量化变量或开放公式;

项使用基本和定义的运算从变量建造。这里没有连结词;

公式用通常方式从项建造,并且如果它们逻辑等价则可以写成等式。要表达重言式,写一个公式等于真值真;

证明的规则是对相等者的等式代换,和一致替换。肯定前件仍然有效,但很少采用。

在下表中,左列包含一个或多个逻辑或数学系统,它是在右列展示的代数结构构成的模型。这些结构要么是布尔代数要么是它的严格扩展。模态逻辑和其他非经典逻辑典型是“带有算子的布尔代数”所构成的模型。

代数在至少以下方面超越了一阶逻辑:

组合子逻辑,有集合论的表达能力;

关系代数,可论证为典范代数逻辑,它可以表达皮亚诺算术和多数公理化集合论,包括正规的ZFC。

历史

代数逻辑有至少两种意义:

早年的布尔代数的研究,

当代的数理逻辑分支抽象代数逻辑。

第一种含义开始于十九世纪中期的奥古斯都·德·摩根和乔治·布尔的工作,接续于查尔斯·皮尔士,达到顶点于 Ernst Schröder 的工作。模型论的创立者 Leopold Loewenheim 和 Thoralf Skolem 是遵循代数传统的逻辑学家。塔斯基是现代数理逻辑主要分支之一的集合论上的模型论的创立者,他在 1940 年的论文中重新阐述了 Schröder 的关系代数并简化了它的公理。这个论文可以被认为是现代抽象代数逻辑的起点。

代数逻辑可以证明开始于莱布尼兹在 1680 年代写的许多备忘录中,直到 1903 年才被 Louis Couturat 在莱布尼兹未发表的遗作中找到并出版。他的逻辑学著作在 Parkinson 和 Loemker 1969 年翻译成英语之前很少被研究。

在 1847 年奥古斯都·德·摩根和乔治·布尔独立的出版了开启现代数理逻辑的小册子。他们和后来的查尔斯·皮尔士、Hugh MacColl、弗雷格、皮亚诺、伯特兰·罗素和怀特海都共享了莱布尼兹的合并符号逻辑、数学和哲学的梦想。莱布尼兹方法的顶点被证明为开始于奥古斯都·德·摩根、发展于查尔斯·皮尔士和 Ernst Schröder 的关系代数,并在并塔斯基和他的学生的工作中达到了完全成熟。

上述提到的人物都没有受到莱布尼兹的影响。有一个例外是模态逻辑之父 Clarence Irving Lewis,他在 1918 年出版了莱布尼兹的逻辑学著作的一个重要片段的英文翻译。

引用

Brady, Geraldine, 2000. From Peirce to Skolem: A neglected chapter in the history of logic. North-Holland.

Ivor Grattan-Guinness, 2000. The Search for Mathematical Roots. Princeton Univ. Press.

Lenzen, Wolfgang, 2004, "Leibniz’s Logic" in Gabbay, D., and Woods, J., eds., Handbook of the History of Logic, Vol. 3: The Rise of Modern Logic from Leibniz to Frege. North-Holland: 1-84.

Loemker Leroy. Leibniz: Philosophical Papers and Letters. Reidel. 1969 (1956). 

Roger Maddux, 1991, "The Origin of Relation Algebras in the Development and Axiomatization of the Calculus of Relations," Studia Logica 50: 421-55.

Parkinson, G.H.R., 1966. Leibniz: Logical Papers. Oxford Uni. Press.

Willard Quine, 1976, "Algebraic Logic and Predicate Functors" in The Ways of Paradox. Harvard Univ. Press: 283-307.

Zalta, E. N., 2000, "A (Leibnizian) Theory of Concepts," Philosophiegeschichte und logische Analyse / Logical Analysis and History of Philosophy 3: 137-183.


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 逻辑代数
逻辑代数中的几个概念参与逻辑运算的变量叫逻辑变量,用字母A,B……表示。每个变量的取值非0即1。0、1不表示数的大小,而是代表两种不同的逻辑状态。正、负逻辑规定:正逻辑体制规定:高电平为逻辑1,低电平为逻辑0。负逻辑体制规定:低电平为逻辑1,高电平为逻辑0。逻辑函数:如果有若干个逻辑变量(如A、B、C、D)按与、或、非三种基本运算组合在一起,得到一个表达式L。对逻辑变量的任意一组取值(如0000、0001、0010)L有唯一的值与之对应,则称L为逻辑函数。逻辑变量A、B、C、D的逻辑函数记为:L=f(A、B、C、D)逻辑运算基本运算逻辑代数的基本运算如下。与(合取),记作x∧y(有时记作xANDy或Kxy),在x=y=1情况下,满足x∧y=1;其他情况下x∧y=0。或(析取),记作x∨y(有时记作xORy或Axy),在x=y=0情况下,满足x∨y=0;其他情况下x∨y=1。非(否定),记作...
· 代数
定义设A{\displaystyleA}为一交换环,A{\displaystyleA}上的代数(或称A{\displaystyleA}-代数)是下述结构:集合E{\displaystyleE}是个A{\displaystyleA}-模。指定E{\displaystyleE}上的一个二元运算,通常以乘法符号表示:此二元运算是双线性的,换言之:最常考虑的情形是A{\displaystyleA}是一个域,这时称域代数,一些作者也将代数定义成域上的代数。若E{\displaystyleE}上的乘法满换性xy=yx{\displaystylexy=yx},则称之为可交换代数;若E{\displaystyleE}上的乘法满足结合律x(yz)=(xy)z{\displaystylex(yz)=(xy)z},则称之为结合代数,详阅主条目结合代数。交换代数学中考虑的代数均属可交换的结合代数。代数同态设E,F...
· 代数
历史希腊数学家欧几里得在其著作几何原本中详述几何性的代数。代数的起源可以追溯到古巴比伦的时代,当时的人们发展出了较之前更进步的算术系统,使其能以代数的方法来做计算。经由此系统的被使用,他们能够列出含有未知数的方程并求解,这些问题在今日一般是使用线性方程、二次方程和不定线性方程等方法来解答的。相对地,这一时期大多数的埃及人及公元前1世纪大多数的印度、希腊和中国等数学家则一般是以几何方法来解答此类问题的,如在莱因德数学纸草书、绳法经、几何原本及九章算术等书中所描述的一般。希腊在几何上的工作,以几何原本为其经典,提供了一个将解特定问题解答的公式广义化成描述及解答方程之更一般的系统之架构。代数(algebra)导源于阿拉伯语单字“al-jabr”,其出自al-Kitābal-muḫtaṣarfīḥisābal-ğabrwa-l-muqābala这本书的书名上,意指移项和合并同类项之计算的摘要,其为...
· 泛代数
基本构思从泛代数角度来看,代数是个集合A拥有一组算子。在A上的一个n元运算是个函数以n个A的元素为输入并返回一个A的元素。无元运算:产生常数a单元运算:例如~x二元运算:x*y除了运算,还有符合一些公理及方程式定律,例如结合律、交换律等等。相关条目调和分析测度分析微分几何及拓扑代数拓扑代数几何抽象代数
· 外代数
定义及运算律外代数有很多种等价的定义,下面的定义是最简洁的一个。定义:设V{\displaystyleV}是域K{\displaystyleK}上的一个向量空间,让Tk(V):=V⊗⊗-->⋯⋯-->⊗⊗-->V⏟⏟-->k{\displaystyleT^{k}(V):={\underset{k}{\underbrace{V\otimes\cdots\otimesV}}}}则定义令I{\displaystyleI}为V{\displaystyleV}的张量代数的理想(即双边理想),该理想是由所有形如v⊗⊗-->v{\displaystylev\otimesv}的张量生成的(其中v∈∈-->V{\displaystylev\inV}任意),则将V{\displaystyleV}上的外代数ΛΛ-->(V){\displaystyle\Lambda(V)...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信