总变差
定义
矢量空间
实值函数ƒ定义在区间[a, b] ⊂ "R的总变差是一维参数曲线x → ƒ(x) , x ∈ [a,b]的弧长。连续可微函数的总变差,可由如下的积分给出
任意实值或虚值函数ƒ定义在区间[a,b]上的总变差,由
定义。其中P为区间[a,b]中的所有分划.
定义在有界区域Ω Ω -->⊂ ⊂ -->Rn{\displaystyle \scriptstyle \Omega \subset \mathbb {R} ^{n}}上的实值可积函数ƒ的总变差,定义为
其中 Cc1(Ω Ω -->,Rn){\displaystyle \scriptstyle C_{c}^{1}(\Omega ,\mathbb {R} ^{n})}是Ω中的紧支集上全体连续可微向量函数构成的集合, ∥ ∥ -->∥ ∥ -->L∞ ∞ -->(Ω Ω -->){\displaystyle \scriptstyle \Vert \;\Vert _{L^{\infty }(\Omega )}}是本质上确界范数。
若ƒ可微,上式可简化为
度量空间
在一个度量空间(Ω Ω -->,Σ Σ -->){\displaystyle (\Omega ,\Sigma )}上,集函数μ μ -->:Σ Σ -->→ → -->R{\displaystyle \mu :\Sigma \rightarrow \mathbb {R} },其总变差为:
其中π π -->{\displaystyle \pi }为E{\displaystyle E}的划分。 如果μ μ -->{\displaystyle \mu }是符号测度,通过汉分解定理可知:
可微定义的证明
首先需要利用高斯散度定理证明一个等式.
引理
在假设条件下,下面的等式成立:
引理证明
由高斯散度定理∫ ∫ -->Ω Ω -->divR=∫ ∫ -->∂ ∂ -->Ω Ω -->R⋅ ⋅ -->n{\displaystyle \int \limits _{\Omega }{\text{div}}\mathbf {R} =\int \limits _{\partial \Omega }\mathbf {R} \cdot \mathbf {n} }. 将R:=fφ φ -->{\displaystyle \mathbf {R} :=f\mathbf {\varphi } }代入,可得
由于在Ω Ω -->{\displaystyle \Omega }的边界上φ φ -->=0{\displaystyle \mathbf {\varphi } =0},从而
注意到div(fφ φ -->)=fdivφ φ -->+∇ ∇ -->f⋅ ⋅ -->φ φ -->{\displaystyle {\text{div}}\left(f\mathbf {\varphi } \right)=f{\text{div}}\mathbf {\varphi } +\nabla f\cdot \varphi }代入上式,移项即得
如果函数f{\displaystyle f}的总变差有限,则称函数f{\displaystyle f}为有界变差函数.
参阅
有界变差
Total variation diminishing
总变差规则化
二次变差
外部链接
理论
单变量
Boris I. Golubov (and comments of Anatolii Georgievich Vitushkin) "Variation of a function",Springer-VerlagOnline Encyclopaedia of Mathematics.
"Total variation" on Planetmath.
多变量
Comments of Anatolii Georgievich Vitushkin on the preceding article of Boris I. Golubov "Variation of a function",Springer-VerlagOnline Encyclopaedia of Mathematics.
Boris I. Golubov "Arzelà variation", "Fréchet variation", "Hardy variation", "Pierpont variation", "Tonelli plane variation", "Vitali variation", voices from theSpringer-VerlagOnline Encyclopaedia of Mathematics.
测度论
Rowland, Todd. "Total Variation". FromMathWorld--A Wolfram Web Resource, created by Eric W. Weisstein.
"Jordan decomposition" on Planetmath.
概率论
M. Denuit and S. Van Bellegem "On the stop-loss and total variation distances between random sums",discussion paper0034 of theStatistic Instituteof the "Université Catholique de Louvain".
应用
Caselles, Vicent; Chambolle; Novaga,The discontinuity set of solutions of the TV denoising problem and some extensions, SIAM, Multiscale Modeling and Simulation, vol. 6 n. 3, 2007 (a work dealing with total variation application in denoising problems for image processing).
Tony F. Chan and Jackie (Jianhong) Shen (2005),Image Processing and Analysis - Variational, PDE, Wavelet, and Stochastic Methods, SIAM, ISBN 089871589X (with in-depth coverage and extensive applications of Total Variations in modern image processing, as started by Rudin, Osher, and Fatemi).
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值