族谱网 头条 人物百科

燃料电池

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:616
转发:0
评论:0
历史威廉‧葛洛夫1839年电池草图燃料电池的原理由德国化学家克里斯提安·弗里德里希·尚班(英语:ChristianFriedrichSchönbein

历史

燃料电池

  威廉‧葛洛夫1839年电池草图

燃料电池的原理由德国化学家克里斯提安·弗里德里希·尚班( 英语:Christian Friedrich Schönbein)于1838年提出,并刊登在当时著名的科学杂志。基于尚班的理论,英国物理学家威廉‧葛洛夫 (英语:William Robert Grove)于1839年2月把理论证明刊登于《科学的哲学杂志与期刊》(Philosophical Magazine and Journal of Science),其后又把燃料电池设计草图于1842年刊登。当时的设计类似现今的磷酸燃料电池(英语:Phosphoric acid fuel cell) 。

1955年,一位为通用电气工作的化学研究员W·汤马斯·葛卢布(W. Thomas Grubb),进一步设计以磺化聚苯乙烯离子交换膜作电解质,改革原始燃料电池。三年后,通用电气的另一位化学研究员李奥纳德·尼德拉克(Leonard Niedrach),想出了将铂沉积在膜上面,铂是氢气进行氧化反应和氧气进行还原反应必需的催化剂,成为“Grubb-Niedrach燃料电池”。

随即通用电气就和美国国家航空航天局及麦克唐纳飞行器公司空发展这个技术,应用于双子星计划,这是燃料电池的第一个商业上的应用。直到1959年,英国的工程师法兰西斯·汤玛士·培根 (英语:Francis Thomas Bacon)和它的同事们才成功地展示出第一具输出功率达5千瓦的实用级燃料电池系统。同年,一个由哈利·伊律格(Harry Ihrig)领导的团队也制造出以15千瓦功率的燃料电池驱动的牵引车。1960年,普惠公司获得培根专利的许可,将燃料电池当作太空计划中电力和水的来源。在1991年,罗杰‧比林期(Roger Billings)发展出世界首个用于汽车的氢燃料电池。

美国联合技术公司的UTC动力(英语:UTC Power)部门是第一个制造商用、大型固定燃料电池的公司,其产品可当做医院、大学、大型办公大楼的动力来源,UTC动力持续也在市场上推出功率达200千瓦燃料电池-PureCell 200,现被400千瓦取代-PureCell Model 400。UTC动力也是美国国家航空航天局在进行太空探索方面唯一的燃料电池供应者,曾将其燃料电池应用于太阳神计划和最近的航天飞机计划(英语:Space Shuttle program),而且也往汽车、公共巴士、手机等方面发展,该公司也展示了第一个质子交换膜的燃料电池汽车,在酷寒的状态下仍能适用。

在1960年代几次的太空任务中,燃料电池被用于驱动登月探险车及供应太空人饮用水,均证明了它的实用性。近年来,因为化石燃料造成的能源危机与环保意识的抬头,令燃料电池的发展日趋兴旺。

类型和设计

燃料电池有多种类型,但是它们都有相同的工作模式。它们主要由三个相邻区段组成:阳极、电解质和阴极。两个化学反应发生在三个不同区段的界面之间。两种反应的净结果是燃料的消耗、水或二氧化碳的产生,和电流的产生,可以直接用于电力设备,通常称为负载。

在阳极上,催化剂将燃料(通常是氢气)氧化,使燃料变成一个正电荷的离子和一个负电荷的电子。电解液是专门设计过的,所以离子可以通过它,而电子则不能。被释放的电子穿过一条电线,因而产生电流。离子通过电解液前往阴极。一旦达到阴极,离子与电子团聚,两者与第三化学品(通常为氧气)一起反应,而产生水或二氧化碳。

燃料电池

  燃料电池示意图

在燃料电池中较重要的设计特征是:

电解质材料。电解质材料通常决定了燃料电池的类型。

使用的燃料。最常见的燃料是氢气,其主要成分为H 2 ,和天然气,其主要成分是甲烷(CH 4 ),等燃料。

阳极催化剂,用来将燃料分解成电子和离子。阳极催化剂通常由极细的铂粉制成。

阴极催化剂,用来将离子转换成像水或二氧化碳的废弃化学物质。阴极催化剂通常由镍制成,但也有纳米材料催化剂。

典型的燃料电池在全额负载下可产生0.6V至0.7V的电压。以下是导致电流上升而电压下降的几个原因:

过电位

欧姆损耗(因电池元件和接连的阻抗而导致压降)

大规模传输损耗(在高负载下,催化剂端的反应物损耗造成电压的快速下降)为了提供所需要的能量,可以将组合多个燃料电池于串联和并联电路中以产生较高电压,而平行配置则可供应较大电流。这种设计被称为“燃料电池堆叠”。就个别电池而言,可以增加其表面积以获得较大电流。在堆叠中,反应物气体应均匀分布于所有电池,以获得最大的功率输出。

质子交换膜燃料电池(PEMFC)

原型的质子交换膜燃料电池的效率前缘(英语 : Efficient frontier)设计、质子导电聚合物膜(电解质)的分隔主要在阳极和阴极双方。这也被称为固态聚合物电解质燃料电池(solid polymer electrolyte fuel cell, SPEFC),这是因为在1970年代初之前的质子交换机制尚未被完全理解。(注意:同义字“聚合物电解质膜”和“质子交换机制”有相同的英文字母缩写。)

燃料电池

  高温质子交换膜燃料电池(PEMFC)的构造图:通过导电复合材料制造(可使用石墨、炭黑、碳纤维以及/或者碳纳米管增强导电性)的、有铣削出的气体通道结构的双极板; 多孔碳布;扩散层(通常在聚合物薄膜上);聚合物膜。

燃料电池

  由质子交换膜燃料电池(PEMFC)的空气通道壁产生的冷凝水。电池周围的金线确保电流的汇集。

阳极一边的氢流到阳极催化剂,并分离成质子和电子,运作温度约80-100℃。这些质子与氧化剂产生反应导致他们成为通常所指的多元促进质子膜。质子,透过膜到阴极,但电子被迫旅游(为提供电源)到外部电路因为电绝缘膜。阴极催化剂,氧分子与(其中有游历通过外部电路)电子和质子发生反应形成水;而在此示例中,唯一的废物产品,液体或蒸气。

除了这种纯氢气类型,还有烃类燃料的燃料电池,包括柴油、甲醇(请参阅:直接甲醇燃料电池和非直接甲醇燃料电池)和化学氢化物。这些类型燃料的废弃产品是二氧化碳和水。

质子交换膜燃料的不同组成部分是双极板、电极、催化剂、膜和有必要的硬件。用于燃料电池的不同部分的材料类型不同。双极板可以不同类型的材料制造,如金属、表面包覆的金属、石墨、柔性石墨C–C复合,carbon–polymer复合材料等。膜电极元件(多边环境协定MEA),被称为心的质子交换膜燃料和通常使夹在两个催化剂涂层碳论文的质子交换膜。贵金属元素铂或类似类型通常作为催化剂在PEMFC中使用。另外,电解液可以是一种高分子膜。

质子交换膜燃料电池的议题

价格。美国能源部的报告说,在2011年,80-kW的车用燃料电池系统的成本在量产(预计到每年50万台)中的价格是每千瓦49美元。目标价格是每千瓦35美元。约20年期间相比的斜坡那样成本降低是必要的,以使质子交换膜燃料电池可与目前市场上的技术竞争,包括汽油内燃机。

水和空气的管理(在PEMFC电池)。在这种类型的燃料电池,膜必须是水化的,需要以它产生的水的完全相同的速率来蒸发掉水。

温度的管理。

某些种类的电池要求的持续性,服务寿命(英语:service life)或者特殊要求。

一些(非-PEDOT)阴极只有有限的一氧化碳容忍能力。

高温燃料电池

固体氧化物燃料电池(SOFC)

固体氧化物燃料电池(英语:Solid Oxide Fuel Cell,缩写:SOFC)由用氧化钇稳定氧化锆(YSZ,<15μm)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被还原形成氧离子,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳的中间氧化产物反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。由于电池本体的构成材料全部是固体,可以不必像其他燃料电池那样制造成平面形状,而是常常制造成圆筒型。

SOFC的特点如下:

由于是高温运作(800-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电,使用寿命预期可以超过40000~80000小时。

由于氧离子是在电解质中移动,所以也可以用CO、天然气、煤气化的气体作为燃料。

SOFC系统的化学反应可以表达如下:

熔融碳酸盐燃料电池(MCFC)

熔融碳酸盐燃料电池(英语:Molten Carbonate Fuel Cell,缩写:MCFC)要求650°C(1,200°F)高温,类似于SOFC。MCFC以熔融碱金属碳酸盐作电解质,并在高温下,这种盐变为熔化态允许电荷(负碳酸根离子)的在电池中移动。

用于熔融碳酸盐燃料电池(MCFC)系统中的化学反应可表示如下:

如同固体氧化物燃料电池(SOFC),熔融碳酸盐燃料电池(MCFC)的缺点包括缓慢的启动时间,是因为它们的运行温度高。这使熔融碳酸盐燃料电池(MCFC)系统不适合移动应用,而这项技术将最有可能被用于固定式燃料电池。熔融碳酸盐燃料电池技术的主要挑战是电池的寿命短。高温和碳酸盐电解质导致在阳极和阴极的腐蚀。这些因素加速MCFC元件的分解,从而降低耐久性和电池寿命。研究人员正在通过探索耐腐蚀材料部件,以及可以增加电池寿命而不降低性能的燃料电池的设计,来解决这个问题。

碱性燃料电池(AFC)

碱性燃料电池(alkaline fuel cell,AFC)是一种燃料电池,由法兰西斯·汤玛士·培根(Francis Thomas Bacon)所发明,以碳为电极,并使用氢氧化钾为电解质,操作温度约为摄氏100~250度(最新的碱性燃料电池操作温度约为摄氏23~70度)。NASA早在1960年时便开始将它运用在航天飞机及人造卫星上,包括著名的阿波罗计划也使用这种燃料电池。AFC的电能转换效率为所有燃料电池中最高的,最高可达70%。

4种主要燃料电池的比较

从21世纪初到现在,4种主要燃料电池的研究开发进展比较如下:

领先的燃料电池类型的效率

燃料电池技术中的术语:

阳极(Anode):发生氧化(电子的损失)的电极。对于燃料电池和其他原电池,阳极是负极端子;而在电解池(其中电解发生时),阳极是正极端子。

水溶液(Aqueous Solution):水溶液指溶剂是水的溶液。由于水是自然界蕴含丰富的良好溶剂,因此在化学中常用到水溶液。.

催化剂(Catalyst):一种化学物质,可以提高反应速度但不被消耗;在反应之后,它可能可以从反应混合物中恢复,在化学上保持不变。催化剂可以降低活化能所需能量,允许更快地或在较低的温度进行的反应。在燃料电池、催化剂促进氧化剂和燃料的反应。通常是将极细的铂粉涂到碳纸或布上。催化剂表面粗糙、多孔,因此铂的表面面积可以最大化接触到氢或氧。催化剂的铂镀在燃料电池中膜的表面。

阴极:(Cathode):发生还原(电子的获得)的电极。对于燃料电池和其它原电池,阴极是正极端子;对于电解池(其中发生电解),阴极是负端。

电解质(Electrolyte):该物质将带电离子从一个电极传导到另一个电极,位于燃料电池、电池或电解槽中。

燃料电池堆(Fuel Cell Stack):单独燃料电池串联,以增加电压。

应用

目前主流发展的应用产品,依据燃料电池发电量归类,可分为定置型发电机、运输工具、便携式电源系统三大类。

定置型发电机

电力

燃料电池

  212型潜艇与燃料电池推进的德国海军的干船坞

固定燃料电池被用于商业、工业及住宅主要和备用电力。燃料电池能有效提供郊区电力,为分散式发电,如航太器、远端气象站、大型公园、通讯中心、农村处,包括研究站和某些军事应用非常重要。运行简单且轻量的氢-氧燃料电池系统,没有重大的部件需要移动。由于燃料电池没有移动部件,而且发电不涉及燃烧,在理想的情况他们可以实现起来,具99.9999%的可靠性。相当于六年产电运行其当中有不多于一分钟的停机时间。因为燃料电池的电解槽系统本身,不存储燃料,而是依赖于外部存储单元,他们可以成功应用在大型能源存储中,设置农村地区是一个例子。

有许多不同类型的固定式燃料电池,所以效率而异,但多数40%至60%的能源效率。然而,当燃料电池余热用于热电联产系统中热建筑时这种效率可以增加到85%。这是明显比传统的煤电厂,是只有约三分之一的能源效益效率更高。假设在规模、生产燃料电池可以节省20-40%的能源成本,当用于热电联产系统时,燃料电池也比传统发电更干净,因为氢源每个将产出1,000千瓦小时(kWh)能量。同时,相比25磅的常规燃烧系统产生的污染物,燃料电池比常规燃煤电厂产生的氮氧化物排放量少97%。

现时,可口可乐、谷歌、沃尔玛、思科、宜家、雀巢、日产、金百利和更多国际企业安装或转了燃料电池,以抒缓他们的能源需求,可见燃料电池的发电效率及环保性在国际上得到认同。另有一个试点方案在华盛顿州的斯图尔特岛上操作,那里斯图尔特岛能源倡议建立了一个完整的闭环系统:太阳能电池板电源电解槽使得氢存储在200磅/平方英寸(1,400 kPa)压力的500美制加仑(1,900 L)储存搭中,并运行ReliOn燃料电池来提供离网住宅的全电动后备。而在纽约州亨普斯特德,有另一个封闭的系统循环2011年底公布发展。

热电联产(CHP)

热电联产(CHP)燃料电池系统,包括微型热电联产(英语: Micro combined heat and power)(MicroCHP)系统的使用,为家庭,办公楼和工厂同时产生电能和热能。系统生成恒定电力(出售把没有被消耗的多余的电力返回到电网),并在同一时间从余热中产生热空气和热水。MicroCHP通常小于5 KWe给家用燃料电池(英语:home fuel cell)或小型企业。

燃料电池余热可以在夏季直接注入地下提供进一步冷却余热,而在冬季可以直接注入建筑物。明尼苏达大学拥有对这种类型系统的专利权。

热电联产系统可以达到85%的效率(40-60%是电+其余是热) 。磷酸燃料电池(PAFC)构成了在现有CHP中在全球的最大部分,和可以提供接近90%的联合效率。熔融碳酸盐(MCFC)和固体氧化物燃料电池(SOFC)也用于供热和发电的联产,并有电气能源约60%的效率。热电联产系统的缺点包括缓慢的斜坡向上和向下速率,成本高,寿命短。它们另外需要有一个贮热水箱来平滑产热的地方,这在家庭用市场是非常不利的地位,因为空间对于住宅物业是一个很大的溢价。

运输工具

燃料电池车(FCEVs)

燃料电池

  一部燃料电池车的部件配置

燃料电池

  丰田汽车的 Toyota FCV ( 英语 : Toyota FCHV ) PEMFC燃料电池汽车

在2013年之前没有可供商业销售的燃料电池车,自2009年以来已发布超过了20类型的燃料电池汽车(FCEVs)的原型和示范车。示范车型包括本田的FCX Clarity(英语:FCHV-ADV ),丰田的FCHV-ADV(英语:FCHV-ADV),梅赛德斯-奔驰的F-CELL(英语:F-CELL)。在2011年6月的示范FCEVs行驶超过了4,800,000公里(3,000,000英里)的里程,重新加注燃料超过27,000次。示范燃料电池车已经能够“在重新加燃料之间的续驶里程超过400公里(250英里)”。它们可以在小于5分钟的时间内完成重新加燃料。

2014年,韩国现代汽车开始在加州以租赁方式提供燃料电池车Hyundai ix35 FCEV,一般消费者购买则要到2015年10月丰田Mirai从美国上市,到2016年6月时已经在美国、英国、丹麦、挪威、比利时等地贩售。

尽管燃料电池车目前已上市,一些专家认为燃料电池汽车将永远不会成为与其他技术相比具经济竞争力,或将需要几十年来让它们变得有利可图。在2011年7月,通用汽车CEO和总裁Daniel Akerson表示,尽管氢燃料电池车的成本正在下降:"氢燃料电池汽车仍然是太贵了,它可能并不实际直到2020年以后,我不知道"。

巴士

燃料电池

  Mercedes-Benz(Daimler AG)Citaro燃料电池巴士,在伦敦奥德维奇

燃料电池

  丰田的氢气燃料电池巴士(TOYOTA FCHV Bus),在2005年世界博览会

在世界上今天有超过100部燃料电池巴士运行。大部分燃料电池巴士是由UTC Power(英语:UTC Power), 丰田(Toyota),Ballard(英语:Ballard),Hydrogenics (英语:Hydrogenics)和Proton Motor(英语: Proton Motor)等公司生产。UTC巴士已经积累了超过600,000英里(970,000千米)的行驶距离。燃料电池巴士比柴油和天然气巴士的燃料经济性要高出39–141%。

燃料电池巴士已经部署在世界各地:加拿大Whistler;美国旧金山;德国汉堡;中国上海;英国伦敦;巴西圣保罗;和其他地方。燃料电池巴士俱乐部(英语:Fuel Cell Bus Club)是一个全球性的合作努力,在试验的燃料电池公共汽车。有影响的项目包括:

12燃料电池巴士部署加州的Oakland和旧金山湾区。

在2007年一月,Daimler AG,36部Ballard Power Systems的燃料电池巴士实验巴士已经成功完成了一个在11个城市的三年的试运行。

在加州的Thor巴士车队使用了UTC Power燃料电池,由SunLine Transit Agency交通公司运行.

叉车(堆高机)

燃料电池为动力的叉车是燃料电池在工业应用内最大的部门之一。用于材料搬运的大多数燃料电池是质子交换膜燃料电池提供动力,但也有一些直接甲醇燃料叉车进入市场。目前正在运营的燃料电池车队有大量的公司,包括西斯科食品,联邦快递货运,GENCO(Wegmans的,可口可乐,金佰利,和Whole Foods),和H-E-B杂货店的。

摩托车和单车类

燃料电池

 Element One ( 英语 : Element One ) 燃料电池赛车

燃料电池

 氢自行车 ( 英语 : PHB (bicycle) ) ,在中国上海

在2005年,英国的智能能源公司(Intelligent Energy)生产的第一个氢气运行摩托车ENV(英语:ENV)(中性排放车)。摩托车有足够运行4小时的燃料,并且以80千米每小时(50英里每小时)的速度在市区行驶了100英里(160 km)。在2004年本田利用本田燃料电池堆开发了一种燃料电池摩托车。还有其他几个单车例子和自行车例子 使用了氢气燃料电池引擎。

在2007年中国上海,Pearl hydrogen power source technology Co.,ltd公司展示了氢自行车,在第9届中国国际燃油技术装备和应用展示会。

飞机

燃料电池

  由氢燃料电池驱动的Fuel Cell Demonstrator波音飞机

在2008年2月,波音公司的研究人员和在欧洲产业合作伙伴进行的飞行试验,试飞了由燃料电池和轻型电池供电的载人飞机。这架所谓燃料电池演示者(Fuel Cell Demonstrator)飞机,使用了质子交换膜(PEM)的燃料电池/锂离子电池的混合动力系统的电动马达,电动马达被耦合到常规的螺旋桨。2003年,世界上第一个完全由燃料电池供电的螺旋桨驱动的飞机飞行。它的燃料电池是一个独特的FlatStack 的堆栈的设计,这允许所述燃料电池被集成在空气动力学表面之下。

现在已经有了几个燃料电池为动力的无人飞行器(UAV)。在2007年,一个Horizen燃料电池的小型无人机,创下无人机飞行距离的记录。军事上特别感兴趣这种应用,原因是它是低噪音,低散热,可以飞到高海拔。2009年,美国海军研究实验室(NRL)的离子虎(Ion Tiger)利用氢为动力的燃料电池,飞行了23小时17分钟。波音公司正在完成试验的幽灵之眼(Phantom Eye),具有高空长航时(HALE),可用于飞行在20,000米(65,000英尺)并有多达4天的时间进行研究和监测。燃料电池也被用来提供飞机的辅助动力,以取代化石燃料发电机,和以前用于启动发动机和飞机上电器的电力需求。燃料电池可以帮助飞机减少二氧化碳CO 2和其他污染物的排放和噪音。

船只

燃料电池

  世界第一艘经公证的燃料电池船 HYDRA ( 英语 : HYDRA ) ,在德国莱比锡市

世界上第一个燃料电池船HYDRA使用了碱性燃料电池(AFC)系统,用6.5-kw的输出。冰岛一直致力于到2015年将其庞大的捕鱼船队使用的燃料电池提供辅助动力,并最终提供船上的主要动力。阿姆斯特丹最近推出了其第一个燃料电池为动力的船,提供给市内周围观赏著名的和美丽的运河的游客。

潜艇

绝气推进潜艇可以使用燃料电池为动力。

德国和意大利海军的212型潜艇所使用的燃料电池可连续下潜几星期而不需要浮出水面。

U212A是一个非核动力的潜艇,由德国海军造船厂Howaldtswerke船厂开发的 。该系统由9个质子交换膜燃料电池,每个可以提供30-kW和50-kW之间。潜艇的静音给它探测其他潜艇的一个优势。

便携式电源系统

使用燃料电池便携电源系统可以在生活领域中使用(即电子产品,露营车,小木屋,海上),在工业领域中(即为偏远地区提供电力,包括气/油井场,通信塔,安全,气象站等)使用,和在军事领域中使用。

相关应用

笔记本电脑,在没有交流电的地方的充电应用。

小电器的便携式充电器(例如,提供充电给移动电话或者个人数位助理( PDA )。

智能手机,便携式电脑和平板电脑。

小型取暖电器

食物保存

呼吸分析仪(英语:Breathalyzers)

一氧化碳探测器(英语:Carbon monoxide detector),电化学传感器。

加氢站

燃料电池

 加氢站 ( 英语 : Hydrogen station )

在2010年,在美国有超过85个加氢站(英语:Hydrogen station)。

截至2012年6月,加州有23个加氢站运行。

在冰岛,第一个公共加氢站(英语:Hydrogen station)在雷克雅未克市开放于2003年。这个加氢站服务戴姆勒-克莱斯勒公司建造的三个巴士,服务于雷克雅未克市公共交通网。

目前,德国在全国范围内有14个加氢站(英语:Hydrogen station)并计划到2015年扩大到50个,通过其公私合作伙伴关系现在的GMBH公司。日本也有氢能高速公路(英语:Hydrogen highway),是作为 日本氢燃料电池项目的一部分。十二个氢燃料站已在11个日本城市建成,并且到2015年将有额外的加氢站(英语:Hydrogen station)可能运行。加拿大,瑞典和挪威也有氢高速公路正在实施。

市场和经济

2012年,燃料电池在全世界市值超过10亿美元,并且亚太国家运送超过3/4的燃料电池系统到世界各地。然而,截至2013年10月,还没有在此行业中的上市公司能实现盈利。在2010年,燃料电池堆的全球出货量有140000单位,相较在2007年仅有11000单位的出货量,并且2011年至2012年的全球燃料电池的出货量有85%的年增长速度。

在2010年,燃料电池的出货量大约50%的固定式燃料电池,在2009年的出货量约为三分之一,并且燃料电池产业的四个主要生产国仍然是美国,德国,日本和韩国。能源部的固态能量转换联盟发现,截至2011年1月,固定式燃料电池产生的电力装机约每千瓦时724美元775美元。 2011年,布卢姆能源(Bloom Energy),一个主要的燃料电池供应商表示,其燃料电池发电每千瓦时9-11美分,其中包括燃料,维护和硬件的价格。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信