族谱网 头条 人物百科

阿莱悖论

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:670
转发:0
评论:0
概论1952年,法国经济学家、诺贝尔经济学奖获得者莫里斯·阿莱斯作了一个著名的实验:对100人测试所设计的赌局:赌局A:100%的机会得到100万元。赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。实验结果:绝大多数人选择A而不是B。即赌局A的期望值(100万元)虽然小于赌局B的期望值(139万元),但是A的效用值大于B的效用值,即:然后阿莱使用新赌局对这些人继续进行测试,赌局C:11%的机会得到100万元,89%的机会什么也得不到。赌局D:10%的机会得到500万元,90%的机会什么也得不到。实验结果:绝大多数人选择D而非C。即赌局C的期望值(11万元)小于赌局D的期望值(50万元),而且C的效用值也小于D的效用值,即:数式证明而由【2】式得:【3】与【1】式矛盾,即阿莱悖论。阿莱悖论的另一种表述是:按照期望效用理论,风险厌恶者应该选择A和C;而风...

概论

1952年,法国经济学家、诺贝尔经济学奖获得者莫里斯·阿莱斯作了一个著名的实验:

对100人测试所设计的赌局:

赌局A:100%的机会得到100万元。

赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。

实验结果:绝大多数人选择A而不是B。即赌局A的期望值(100万元)虽然小于赌局B的期望值(139万元),但是A的效用值大于B的效用值,即:

然后阿莱使用新赌局对这些人继续进行测试,

赌局C:11%的机会得到100万元,89%的机会什么也得不到。

赌局D:10%的机会得到500万元,90%的机会什么也得不到。

实验结果:绝大多数人选择D而非C。即赌局C的期望值(11万元)小于赌局D的期望值(50万元),而且C的效用值也小于D的效用值,即:

数式证明

而由【2】式得:

【3】与【1】式矛盾,即 阿莱悖论 。

阿莱悖论的另一种表述是:按照期望效用理论,风险厌恶者应该选择A和C;而风险喜好者应该选择B和D。然而实验中的大多数人选择A和D。

阿莱悖论的解释

出现阿莱悖论的原因是确定性效应(Certainty effect),即人在决策时,对结果确定的现象过度重视。

参见

艾尔斯伯格悖论

圣彼得堡悖论


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 阿罗悖论
命题有N种选择,有m个决策者,他们每个人都对这N个选择有一个从优至劣的排序。我们要设计一种选举法则,使得将这m个排序的信息汇总成一个新的排序,称为投票结果。我们希望这种法则满足以下条件:那么,如果N不小于3,我们不可能设计出这种制度。例子例如,某日人们举办一个投票,这个投票问券只有一个问题,包含若干个选项,投票者根据自己的偏好给这几个选项排序。人们希望满足以下几个条件:投票的结果应该能表现出多个参加者的偏好,而不是某个人的偏好。它应该能体现所有参加者的偏好,并且如果有2次投票所有人投的票相同,结果也一定相同。如果人们改变了某2个选项的相对优先级,那么这变化不应该影响其他选项的相对优先级。如果一个人提高了某个选项的优先级,那么在结果中,这个选项的优先级不能因此下降。所有结果的排序都应该是可能达到的。阿罗的结论是,如果有2个或以上的人参加投票,并且问题有3个或以上的选项,那么以上的这些条件不可...
· 悖论
逻辑悖论的定义抛开悖论的各种含义,通常所说的导致矛盾的悖论是指逻辑悖论。要成为一个逻辑悖论,应当满足如下条件:有一个命题A,称为悖论命题。有一个逻辑系统L,称为相关系统。有一组命题E,称为背景命题。背景命题都是相关系统中的真命题。相关系统被简化为背景命题,背景命题成为悖论证明的依据。相关系统无法确定悖论命题A的真值,但如果假设A为真,则根据背景命题,可以推出A为假,反之,如果假设A为假,又可根据背景命题,推出A为真。因此,要判断一个悖论是否真的逻辑悖论,就是要确定要素A,L和E,特别是要确认E中的命题都是真命题。如果E中的命题不真,则这不是一个逻辑悖论,而是一个逻辑错误。所有逻辑悖论最终都可以归结为一个命题A⇔¬A,称为悖论情形(paradoxsituation),是进一步推出矛盾的依据。问题是,A⇔¬A在相关系统中是不是一个真命题。如果是真命题,那么就可以由它推出矛盾,悖论成立,是相关系...
· 阿莱士
生平俱乐部阿历斯是在巴西联赛强队山度士展开其足球生涯,2002年已升上一队。至2004年他获得当时锐意在英超上位的新兴势力切尔西垂青,但由于受到外援工作证所限,在刚加盟切尔西不久,就被外借到荷兰劲旅PSV埃因霍温。效力PSV埃因霍温时代阿历斯在PSV埃因霍温效力了三年。在效力第一年(2004-05年赛季),他协助了该荷兰劲旅赢得荷甲和荷兰杯双料冠军。当届球队正参加欧冠杯,阿历斯协助过PSV埃因霍温淘汰两支法甲前列分子摩纳哥和里昂,惟在四分之一决赛不敌意甲大俱乐部AC米兰。至2005-06年赛季,阿历斯也顺利协助PSV埃因霍温成功卫冕荷甲联赛冠军。原先切尔西是外借阿历斯给PSV埃因霍温两年,惟最后切尔西仍延长外借合约至2007年。换言之阿历斯仍继续留在PSV埃因霍温一年。这年阿历斯也顺利协助PSV埃因霍温赢得荷甲联赛冠军。同时他在欧冠杯八分之一决赛时取得进球,淘汰了英超的阿森纳晋级八强。不过...
· 诺阿·冯莱
大学生涯冯莱效力于印第安纳大学山地人队,出战30场(其中29场先发),场均出战26.5分钟,能拿下11.3分,9个篮板和1.4次盖帽。2014年4月3日,冯莱宣布参加2014年NBA选秀,提前结束他的大学生涯。NBA生涯在2014年6月27日举行的2014年NBA选秀上,冯莱在第9顺位被夏洛特黄蜂选中。.同年7月25日,他与黄蜂签下一份新秀合同。在当年的拉斯维加斯夏季联赛中,冯莱场均能拿下9.1分,10个篮板,命中率28.4%。参见2014年NBA选秀
· 罗素悖论
罗素悖论我们通常希望:任给一个性质,满足该性质的所有集合总可以组成一个集合。但这样的企图将导致悖论:罗素悖论:设命题函数P(x)表示“x∉x”,现假设由性质P确定一个集合A——也就是说“A={x|x∉x}”。那么现在的问题是:A∈A是否成立?首先,若A∈A,则A是A的元素,那么A不具有性质P,由命题函数P知A∉A;其次,若A∉A,也就是说A具有性质P,而A是由所有具有性质P的类组成的,所以A∈A。罗素悖论还有一些更为通俗的描述,如理发师悖论、书目悖论。罗素悖论在类的理论中通过内涵公理而得到解决。理发师悖论和罗素悖论等价理发师悖论和罗素悖论是等价的:因为,如果把每个人看成一个集合,这个集合的元素被定义成这个人刮脸的对象。那么,理发师宣称,他的元素,都是城里不属于自身的那些集合,并且城里所有不属于自身的集合都属于他。那么他是否属于他自己?这样就由理发师悖论得到罗素悖论。反过来的变换也是成立的。...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信