族谱网 头条 人物百科

保守力

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:3061
转发:0
评论:0
概述保守力可以视为一种使机械能守恒的作用力。在一个孤立系统里,假若所有的作用力都是保守力,则此系统的机械能守恒。在这里,机械能指的是动能与势能的总合。思考一个闭合路径,假设,感受着某作用力,一个粒子从初始位置A移动经过任意闭合路径后,又回到位置A,而此作用力所做于粒子的机械功都等于零,则此作用力满足保守力的条件,可以被分类为保守力。请注意,对于这物理系统,很可能有其他的作用力施加于粒子,但是,这分类只专注于指定的作用力,忽略其他的作用力。当然,根据叠加原理,这分类也可以专注于几个作用力的合力。例如引力、弹簧力、磁场力(依照某些定义而定,稍后会加以详细说明)、电场力(伴随的磁场与时间无关,请参阅法拉第电磁感应定律)等等,都是保守力;而摩擦力和空气阻力是典型的非保守力。对于非保守力,由于能量守恒,损耗的能量必需被传输到其他地方。通常,能量会转换为热能,例如,摩擦力会产生热能,有时候,还会产生声...

概述

保守力可以视为一种使机械能守恒的作用力。在一个孤立系统里,假若所有的作用力都是保守力,则此系统的机械能守恒。在这里,机械能指的是动能与势能的总合。

思考一个闭合路径,假设,感受着某作用力,一个粒子从初始位置A移动经过任意闭合路径后,又回到位置 A ,而此作用力所做于粒子的机械功都等于零,则此作用力满足保守力的条件,可以被分类为保守力。请注意,对于这物理系统,很可能有其他的作用力施加于粒子,但是,这分类只专注于指定的作用力,忽略其他的作用力。当然,根据叠加原理,这分类也可以专注于几个作用力的合力。例如引力、弹簧力、磁场力(依照某些定义而定,稍后会加以详细说明)、电场力(伴随的磁场与时间无关,请参阅法拉第电磁感应定律)等等,都是保守力;而摩擦力和空气阻力是典型的非保守力。

对于非保守力,由于能量守恒,损耗的能量必需被传输到其他地方。通常,能量会转换为热能,例如,摩擦力会产生热能,有时候,还会产生声能。对于移动中的船只,水的阻力会将船只的机械能转换为热能、声能、以及在尾流边缘的波能。由于热力学第二定律,这些能量损耗是不可逆的。

路径独立性

保守力

因为引力是保守力,它对于一个物体所做的机械功,只跟物体位置高度的差值有关。

闭合路径思想实验得到的直接结果是,保守力对于一个粒子所做的机械功,跟移动路径无关;还有,这机械功等于,终结势能减去初始势能。试着证明这句话的正确性。设想从点 A 到点 B 有两条不同的路径。选择路径 1 从点 A 移动到点 B ,然后选择路径 2 反方向从点 B 移动到点 A ,粒子能量的改变是零 。因此,不管是选择路径 1 或路径 2 ,从点 A 移动到点 B ,所做的机械功相等。保守力所做的机械功与经过哪一条路径无关,只要两条路径的初始点与终结点相同 。

举例而言,假设一个小孩从一个滑梯上滑下来,从滑梯的顶端到底端,不论滑梯的形状,直线型或螺旋型,引力对于这小孩所做的机械功都一样的。引力所做的机械功,只跟这小孩的落差有关。

保守力的性质

设定 F{\displaystyle \mathbf {F} } 为在空间任意位置良好定义(或空间内单连通的区域)的矢量场,假若它满足以下三个等价的条件中任意一个条件,则可称此矢量场为保守矢量场:

保守力因为可以保守机械能而得名。最常见的保守力为引力、电场力(伴随的磁场与时间无关,请参阅法拉第电磁感应定律)、弹簧力。

数学证明

1⇒2:

2⇒3:

3⇒1:

总结,这三个条件彼此等价。由于符合第二个条件就等于通过保守力的闭合路径考试。所以,只要满足上述三个条件的任何一条件,施加于粒子的作用力就是保守力。

磁场力

很多种作用力不是力矢量场,特别是跟速度有关的作用力。对于这些案例,上述三个条件并不数学等价。例如,磁场力满足第二个条件(由于作用于带电粒子的磁场力所做的机械功永远为零),但是不满足第三个条件,而第一个条件更是不存在定义──磁场力不是矢量场,磁场力与速度有关,必需先给定速度函数的形式,才能计算磁场力的旋度。

所以,有一些物理学者将磁场力分类为保守力,而又有一些物理学者反对这样分类。磁场力是一个特别案例;大多数跟速度有关的作用力,像摩擦力,不能满足上述三个条件中的任意一个条件,因此,可以明确地分类为非保守力。

非保守力

在经典力学里,当计算一个物理系统的运动时,为了简易分析与计算,自由度被忽略,因此会出现非保守力。举例而言,摩擦力可以不被视为一种非保守力,而是每一个分子在运动时互相作用的力。可是,这样做,就不能应用统计力学,而必须特别计算每一个分子的运动。对于宏观系统,非保守力的概算,比起额外几百万自由度的计算,会简单很多。非保守力的案例有摩擦力、非弹性物质的应力。

在广义相对论里,引力是非保守力,这可以从水星近日点的反常进动观察得着。但是,应力-能量张量是守恒的。

参阅

保守矢量场

螺线矢量场


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信