族谱网 头条 人物百科

米兰科维奇循环

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1389
转发:0
评论:0
地球的变动地球围绕自转轴自转和在轨道上绕着太阳公转的过程中,会有几个准周期的变化发生。运动曲线上虽然有大量的正弦成分,但仅有几个成分在主导。米兰科维奇研究轨道离心率、倾角、和进动的变化。这些在运动和方向上的变化改变了太阳辐射抵达地球的方向和数量,这是所知的太阳强迫作用(一个辐射强迫作用(英语:Radiativeforcing)的例子)。北极附近地区由于有大量的陆地,变动被认为比较重要,这是因为陆地的反应比海洋快速。轨道形状(离心率)圆轨道,没有离心率。轨道有0.5的离心率。地球的轨道是椭圆形,而离心率是测量椭圆与圆形的偏差。地球轨道的形状是从接近圆形(低离心率的0.005)到轻度的椭圆(高离心率的0.058),平均的离心率是0.028,这些变化的主要周期是413,000年(离心率改变±0.012)。其它较主要的周期是是95,000年和125,000年(联结的周期是400,000年),而分异...

地球的变动

地球围绕自转轴自转和在轨道上绕着太阳公转的过程中,会有几个准周期的变化发生。运动曲线上虽然有大量的正弦成分,但仅有几个成分在主导 。米兰科维奇研究轨道离心率、倾角、和进动的变化。这些在运动和方向上的变化改变了太阳辐射抵达地球的方向和数量,这是所知的 太阳强迫作用 (一个 辐射强迫作用 ( 英语 : Radiative forcing ) 的例子)。北极附近地区由于有大量的陆地,变动被认为比较重要,这是因为陆地的反应比海洋快速。

 

轨道形状(离心率)

米兰科维奇循环

圆轨道,没有离心率。轨道有0.5的离心率。 

地球的轨道是椭圆形,而离心率是测量椭圆与圆形的偏差。地球轨道的形状是从接近圆形(低离心率的0.005)到轻度的椭圆(高离心率的0.058),平均的离心率是0.028,这些变化的主要周期是413,000年(离心率改变±0.012)。其它较主要的周期是是95,000年和125,000年(联结的周期是400,000年),而分异松散的周期是100,000年)。目前的离心率是0.0167。

如果地球是唯一环绕着太阳的行星,它的离心率即使经过数百万年也不会有感觉得到的轻微变化,地球轨道离心率的改变主要是受到木星和土星不同引力的交互作用影响。椭圆轨道的离心率虽然会改变,但椭圆轨道的半长轴不会改变。从摄动理论的观点,使用天体力学计算轨道的演化,半长轴是绝热不变量。依据开普勒第三定律,轨道周期是由轨道半长轴测定的。因此,地球的轨道周期,恒星年,当轨道逐渐变化时,长度也仍然保持着不变。当半短轴随着离心率的增加缩短时,季节的变化会加剧 ,但根据开普勒第二定律,行星的平均太阳辐射变化在低离心率时只有微量的变化。

同样的平均辐射与平均温度并不会有相对应的关联性(由于史蒂芬-波兹曼定律是非线性的)。一个与温度20°相对应的辐射,可以有±50 %的对称变化(例如,来自季节的变化 )。我们观测到的温度变化对应于平均16℃(也就是说偏差有n-4℃)。并且在一天之中的辐射变化(仍然对应于平均温度20℃),我们观察到的平均温度是(对零热容量)-113℃。

在最靠近太阳时(近日点)相对增加的太阳辐射大约是在距离太阳最远时离心率的4倍。以目前的轨道离心率,这相当于增加6.8%入射的太阳辐射,而目前近日点和远日点的差异只有3.4%(510万公里)。现在通过近日点的日期大约在每年的1月3日,而经过远日点的日期大约是7月4日。当地球轨道最椭圆时,在近日点的太阳辐射量将比远日点时大23%。

轨道力学要求季节的长度与季节的象限领域成正比,因此在离心率的极端值时,在轨道远心点端的季节持续的时间也会大幅的增长。当秋天和冬天是在出现在近心端时,如同目前北半球的状态,地球在轨道上的移动速度是最快的,因此秋天和冬天会比春天和夏天稍短一些。像这样,夏天比冬天长4.66天,春天比秋天长2.9天。

转轴倾角(倾角)

米兰科维奇循环

  地轴倾斜的范围在22.1-24.5°。

地球的转轴倾角(倾斜)是地球的转轴相对于轨道平面的角度。角度变化的范围是2.4°,在大约41,000年的周期内从倾斜22.1°缓慢的变化至24.5°并且再复原。当倾角增加时,日照(进入的太阳辐射)在季节周期上的振幅也增加;在两个半球的夏季都会接收到更多的太阳辐射通量,而冬季的辐射通量减少。

但是,这种冬夏两季的反相变化在地表各处幅度不尽相同。当倾角增加时,高纬度的年平均日照幅度会增加,同时低纬度感受的日照量会减少。凉爽的夏天造成先前在冬天的冰雪融化量减少,暗示著冰河期的开始。所以可以说,较小的倾角是冰河期所喜爱的,因为高纬度平均日照量的降低,以及夏季日照量的缩减。但是,没有气候变化与轴倾角极端值变化之间有意义的关联。

科学家利用电脑模型研究更极端的地轴倾斜,比那些实际发生过更高的轴倾角,引发高纬度的极端气候,以个别的研究能否威胁目前已经存在地球上的高等生物型态的生命。它们注意到高倾角并不能完全的消除一颗行星的生物,但会使它更难以茁状和成长,而且也会让现今存在于土地上的温血生物衰弱. 。

目前地球相对于轨道平面的倾角是23.44度,大约是在各个极端值的中间。倾角是在周期的减少阶段中,大约公元10,000年会达到其最小值。这一趋势的本身往往会造成温暖的冬季和凉爽的夏季,但是增强的温室气体可能会超越这种变化的影响。

轴向进动

米兰科维奇循环

  进动的运动。

地球自转轴的方向相对于恒星的变化称为进动,周期大约是26,000年。这种陀螺的运动是由于太阳和月球对固体的地球,加上地球的形状是扁椭球而不是理想的球,所施加的潮汐力,而太阳和月球有着大约一致的效果。

当自转轴的方向在轨道的近日点朝向太阳时,一个极半球的季节有着较大的变化而另一个极半球的季节变化较为温和。在近日点时是夏季的半球,接收到的太阳辐射会相对应的增加,而这个半球在冬季也会相对的较为寒冷。另一个半球则会有较温暖的冬季和较为凉爽的夏季。

当地球的近日点和远日点是朝向分点时,北半球和南半球有着相似的季节分布状态。

在目前,当南半球的夏季时地球位于近日点,并且在远日点时是南半球的冬季。因此,当其它的因素都相同时,南半球的季节会比北半球的较为极端。

拱线进动

米兰科维奇循环

  以椭圆轨道(卵型)环绕太阳的行星,其轨道会随者时间改变(拱线进动),图中的离心率在视觉上被夸大了。在太阳系内大多数天体的离心率都很小,几乎接近圆形。

米兰科维奇循环

  拱线进动对季节的影响。

另一方面,椭圆轨道本身在空间中的行进,主要是受到木星和土星交互作用的结果。这种轨道进动和陀螺旋转轴的运动是有着相同的意义,会使分点岁差相对于近日点进动的周期从25,771.5年缩短至大约为21,636年。

轨道倾角

地球轨道的倾角会在现在的轨道平面上以70,000年的周期向上和向下漂移。米兰科维奇没有研究这种三维空间的运动,这种运动被称为 黄道进动 或是 行星进动 。

近期的研究人员注意到这种轨道的漂移也会相对于其他的行星轨道移动。 不变平面 ( 英语 : Invariable plane ) ,代表太阳系角动量的平面,大约就是木星的轨道平面。地球的轨道以100,000年的周期相对于不变的平面倾斜;很偶然的机会,这非常类似于100,000年的离心率周期。这个100,000年的周期与100,000年的冰河期周期模式相符合。

不变的平面中曾被认有尘埃和其它碎片形成的盘面,并且会通过几种可能的手段影响到地球的气候。地球目前在每年的1月9日和7月9日通过不变平面,雷达的侦测显示这时流星和相关的夜光云的数量都有增加 。

使用南极冰核中困住的气泡中气体的氢氮比率进行的年代学研究,这似乎可以直接反应当地的日照,从冰核中记录的气候对应出北半球日照的结论,一如米兰科维奇的假说(Kawamura et al., Nature, 23 August 2007, vol 448, p912-917)。这是验证米兰科维奇假说追加的一个新方法,并且与100,000年周期的"倾斜"理论是不吻合的。

问题

因为观测到的气候周期正好符合了轨道周期,使轨道理论获得了压倒性的支持。然而,在理论的满足和观测上还是有几个困难。

米兰科维奇循环

  沉积物的性质以循环的方式在改变,从沉积的纪录中可以显示这些周期。此处,循环可以从不同植被的颜色和电阻观测出来。

十万年的问题

100000年问题是离心率的变化对太阳强迫的比进动或倾角一个显著较小的影响 - 按照理论,并因此可能预期会产生最弱的效果。

延伸读物

Roe G. In defense of Milankovitch. Geophysical Research Letters. 2006, 33 : L24703. doi:10.1029/2006GL027817 . This shows that Milankovitch theory fits the data extremely well, over the past million years, provided that we consider derivatives.

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science. 2001, 292 (5517): 686–693. doi:10.1126/science.1059412 . PMID 11326091 . This review article discusses cycles and large-scale changes in the global climate during the Cenozoic Era.

Template:Chronology Template:Global warming


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

更多文章

更多精彩文章
评论 {{commentTotal}} 文明上网理性发言,请遵守《新闻评论服务协议》
游客
发表评论
  • {{item.userName}} 举报

    {{item.content}}

    {{item.time}} {{item.replyListShow ? '收起' : '展开'}}评论 {{curReplyId == item.id ? '取消回复' : '回复'}}

    回复评论
加载更多评论
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回
打赏
私信

推荐阅读

· 米卢廷·米兰科维奇
早年生活米卢廷·米兰科维奇的出生地米兰科维奇出生在奥匈帝国达利(今属克罗地亚)的一个东正教塞尔维亚商人和地主家庭中,米兰科维奇和他的双胞胎妹妹是七个孩子中年龄最长的两个。因为米兰科维奇的健康因素,他在家里接受他的小学教育,由他的父亲和私人教师,以及家庭的一些亲戚和朋友教学,其中有一些是有名的哲学家、发明家和诗人。他的父母在他幼年时发现了他的数学天赋。除了数学以外,他的父亲还向他介绍许多人物和团体,并教他评论和誊写,以及阅读史诗。米兰科维奇的父亲于1886年10月27日去世后由他的亲戚VasаMuačević照顾并支持他的一切,直到去世为止。米兰科维奇在出生地的家中完成了小学教育后,他进入了位于奥西耶克Realka的中学就读。米兰科维奇在中学的第一个学期结束后成为班级中学业成绩最佳的学生,直到毕业为止。这时候他遇到了一位真正的工程师和发明家,他在比尔森的斯柯达公司火炮工厂任职的亲戚Andrа...
· For循环
for循环的种类传统的for循环for-loopsC语言中传统的for-loop包含三个部分:初始化、条件、递增,这三个部分都是可有可无的。for(INITIALIZATION;CONDITION;AFTERTHOUGHT){//Codeforthefor-loop"sbodygoeshere.}初始化是宣告(或者赋值)任何需要的变数的动作。如果你要使用多个变数,则变数的种类要一致。条件的部分则是检查是否离开这个循环,也就是让程式码往下执行。如果条件判断为假,则离开循环。递增在每跑一次循环都会重复执行一次。在此以Java为例:for(inti=0;i<100;i++)//Printsthenumbers0to99(andnot100),eachseparatedbyaspace.{System.out.print(i);System.out.print("");}System.out.pr...
· 氮循环
基本概念空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一。在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子。加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程。一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定。这些细菌拥有可促进氮气氢化成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分。某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例如豌豆或蚕豆)的根瘤中。这些细菌和植物建立了一种互利共生的关系,为植物生产氨以换取糖类。因此可通过栽种豆科植物使氮素贫瘠的土地变得肥沃。还有一些其它的植物可供建立这种共生关系。其它植物利用根系从土壤中吸收硝酸根离子或铵离子以获取氮素。动物体内的所有氮素则均由在食物链中进...
· while循环
程式范例C/C++unsignedintcounter=5;unsignedlongfactorial=1;while(counter>0){factorial*=counter--;/*当满足循环条件(本例为:counter>0)时会反复执行该条语句*/}printf("%lu",factorial);VB"这是一个用While循环的例子dimcounterasIntegerdimTickasIntegercounter=5tick=1Print"Start"whilecounter>0counter=counter-tick"循环语句WendPrint"End"
· 米兰
历史17世纪时的米兰米兰的历史最早可以追溯至公元前400年左右,当时凯尔特人分支因苏布雷人(Insubres)已经在定居米兰与周边地区。公元前222年罗马共和国占领该地。米兰后来逐渐成为罗马帝国的商业贸易大城。293年,当盎博罗削在米兰担任主教,而狄奥多西一世继任为罗马皇帝时,米兰曾短时间成为西罗马帝国首都,当时米兰是欧洲第二大城市,居民约30万人。公元3世纪时,米兰被罗马皇帝正式划入领土之下,是当时西方文明的重要地区。罗马帝国皇帝君士坦丁一世和李锡尼在313年于米兰颁发米兰敕令,宣布罗马帝国境内有信仰基督教的自由,并且发还了已经没收的教会财产,亦承认了基督教的合法地位。米兰因此成为基督教的推广中心,公元774年,查理大帝(或者查理曼,曼在日耳曼语中就是大帝的意思,相当于英文theGreat)曾短暂征服米兰。直到公元962年,米兰才又回到意大利人的手上。米兰于11世纪时重新受到瞩目,成为其...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信