族谱网 头条 人物百科

线性代数

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:573
转发:0
评论:0
历史线性代数的研究最初出现于对行列式的研究上。行列式当时被用来求解线性方程组。莱布尼茨在1693年使用行列式。随后,加布里尔·克拉默在1750年推导出求解线性方程组的克莱姆法则。然后,高斯利用高斯消元法发展出求解线性系统的理论。这也被列为大地测量学的一项进展。现代线性代数的历史可以上溯到19世纪中期的英国。1843年,哈密顿发现四元数。1844年,赫尔曼·格拉斯曼发表他的著作《线性外代数》(DielineareAusdehnungslehre),包括今日线性代数的一些主题。1848年,詹姆斯·西尔维斯特引入矩阵(matrix),该词是“子宫”的拉丁语。阿瑟·凯莱在研究线性变换时引入矩阵乘法和转置的概念。很重要的是,凯莱使用一个字母来代表一个矩阵,因此将矩阵当做了聚合对象。他也意识到矩阵和行列式之间的联系。不过除了这些早期的文献以外.线性代数主要是在二十世纪发展的。在抽象代数的环论开发之前,

历史

线性代数的研究最初出现于对行列式的研究上。行列式当时被用来求解线性方程组。莱布尼茨在1693年使用行列式。随后,加布里尔·克拉默在1750年推导出求解线性方程组的克莱姆法则。然后,高斯利用高斯消元法发展出求解线性系统的理论。这也被列为大地测量学的一项进展。

现代线性代数的历史可以上溯到19世纪中期的英国。1843年,哈密顿发现四元数。1844年,赫尔曼·格拉斯曼发表他的著作《线性外代数》(Die lineare Ausdehnungslehre),包括今日线性代数的一些主题。1848年,詹姆斯·西尔维斯特引入矩阵(matrix),该词是“”的拉丁语。阿瑟·凯莱在研究线性变换时引入矩阵乘法和转置的概念。很重要的是,凯莱使用一个字母来代表一个矩阵,因此将矩阵当做了聚合对象。他也意识到矩阵和行列式之间的联系。

不过除了这些早期的文献以外.线性代数主要是在二十世纪发展的。在抽象代数的环论开发之前,矩阵只有模糊不清的定义。随着狭义相对论的到来,很多开拓者发现线性代数的微妙。进一步的,解偏微分方程的克莱姆法则的例行应用导致大学的标准教育中包括线性代数。例如,E.T. Copson写到:

1882年,Hüseyin Tevfik Pasha写了一本书,名为《线性代数》。 第一次现代化精确定义向量空间是在1888年,由朱塞佩·皮亚诺提出。在1888年,弗兰西斯·高尔顿还发起相关系数的应用。经常有多于一个随机变量出现并且它们可以互相关。在多变元随机变量的统计分析中,相关矩阵是自然的工具。所以这种随机向量的统计研究帮助矩阵用途的开发。到1900年,一种有限维向量空间的线性变换理论被提出。在20世纪上半叶,许多前几世纪的想法和方法被总结成抽象代数,线性代数第一次有了它的现代形式。矩阵在量子力学、狭义相对论和统计学上的应用帮助线性代数的主题超越纯数学的范畴。计算机的发展导致更多地研究致力于有关高斯消元法和矩阵分解的有效算法上。线性代数成为数字模拟和模型的基本工具。

基本介绍

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n元组 )用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用8维向量来表示8个国家的国民生产总值(G)。当所有国家的顺序排定之后,比如(中国,美国,英国,法国,德国,西班牙,印度,澳大利亚),可以使用向量(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 )显示这些国家某一年各自的G。这里,每个国家的G都在各自的位置上。

作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。

线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。

向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。

我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。

线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。

研究范围

向量空间

向量空间是线性代数的主要结构。域 F 上的向量空间是集合 V 再加上两个二元运算。 V 的元素叫做向量而 F 的元素叫做标量。第一个运算,向量加法,取任意两个向量 v 和 w ,然后输出第三个向量 v + w 。第二个运算,向量乘法,取任意标量 a 和任意向量 v 并输出新 向量 av 。从第一个例子来看,其中乘法是以标量 a 将向量 v 缩放后完成的,这种乘法叫做 v 数乘 a . 向量空间内的加法和乘法运算满足下列公理。 在下表中,令 u , v 和 w 为 V 中的任意向量, a 和 b 为 F 中的标量。

一般向量空间 V 可能有不同性质的元素,例如,函数、多项式、向量或矩阵。线性代数关注的是所有向量空间的共同性质。

线性变换

子空间

矩阵理论

矩阵是一个矩形的数学方阵。一个方阵可看作两个矢量空间的线性变阵,故矩阵理论可当作线性代数的一个分枝。

在图论,每一个加上标示图对应唯一的非负矩阵,称为邻接矩阵.

排列矩阵是排列的矩阵表达式,在组合数学极为重要。

正定矩阵及半正定矩阵可用来寻找实数函数的极大值或极小值。

任意环矩阵亦非常重要。举例说,多项式环的矩阵用于控制理论。

另外,不同的矩阵环经常是提供数学上反例的素材。

特征值和特征向量

一般情况下,线性变换可能相当复杂。一些低维的例子,让我们领会不同的类型。一般的 n 维变换 T 的一个技巧是找到在 T 下的不变集——特征线。如果 v 是一个非零向量,使得 Tv 为 v 的标量倍,那么通过 0 和 v 的直线就是在 T 下的不变集,而 v 被称为 特征向量 。使得 Tv = λ v 的标量 λ 叫做 T 的 特征值 。

要求一个特征向量或特征值,我们注意到

其中 I 是单位矩阵。为使该方程存在非平凡解,det( T − λ I) = 0。行列式是一个多项式,所以在域 R 内不保证存在特征值。

内积空间

相关定理

每一个线性空间都有一个基。

对一个 n 阶方阵 A ,如果存在一个 n 阶方阵 B 使 AB = BA = I ( I 是单位矩阵),则 A 为非奇异方阵 。

一个方阵非奇异当且仅当它的行列式不为零。

一个方阵非奇异当且仅当它代表的线性变换是个自同构。

一个矩阵半正定当且仅当它的每个特征值大于或等于零。

一个矩阵正定当且仅当它的每个特征值都大于零。

一般化和相关主题

线性代数是一个成功的理论,其方法已被应用于数学的其他分支。模论就是将线性代数中的标量的域用环替代,并进行研究,像线性相依、线性生成空间、基底、秩等概念仍然可以适用。不过许多线性代数中的定理在模论中不成立,例如不是所有的模都有基底(有基底的模称为自由模),自由模的秩不唯一,不是所有模中的线性独立的子集都可以延伸成为基底,也不是所有模生成空间的子集都包括基底。

多重线性代数推广线性代数的方法。和线性代数一样也是建立在向量的概念上,发展向量空间的理论。在应用上,出现许多类型的张量。

在算子的谱理论中,通过数学分析,可以控制无限维矩阵。泛函分析混合线性代数和数学分析中的方式,研究许多不同函数空间,例如Lp空间。

注解

参见

重要线性代数著作

数值线性代数

特征向量

基础矩阵

线性回归

数值线性代数

单纯形法

线性规划

变换矩阵

引用

Beezer, Rob ,A First Course in Linear Algebra, licensed underGFDL.

Fearnley-Sander, Desmond ,Hermann Grassmann and the Creation of Linear Algebra, American Mathematical Monthly 86 (1979), pp. 809–817.

Grassmann, Hermann , Die lineale Ausdehnungslehre ein neuer Zweig der Mathematik: dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert , O. Wigand, Leipzig, 1844.

Jim Hefferon: Linear Algebra (Online textbook)

Edwin H. Connell: Elements of Abstract and Linear Algebra (Online textbook)


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信