族谱网 头条 人物百科

切触几何

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:312
转发:0
评论:0
应用切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。切触形式和结构一个切触形式α在2n+1维流形M上就是一个(局部)1-流形,具有属性一个切触结构ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。从定义可以导出dα限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。作为基本例子,考虑R,使用一下坐标1-形式在一点的切除平面ξ由下列向量张成和(画一幅图像!)。实际上很容易将这个例子推广到任意R。根据达布定理,一个流形上的每个切触结构局部...

应用

切触几何和辛几何一样在物理学中有广泛的应用,例如,几何光学、经典力学、热力学、几何量子化、以及诸如控制论这样的应用数学。它也可以用于证明有趣的事情,例如‘你总是可以平泊你的汽车,只要空间足够大’。 切触几何有很多低维拓扑中的应用;一个这种相关性的表现就是每个三维流形都有一个切触结构。

切触形式和结构

一个切触形式 α在2n+1维流形M上就是一个(局部)1-流形,具有属性

一个切触结构 ξ在一个流形上就是一个切触形式α的核,也就是,一个完全不可积超平面场。大致来讲,这表示你无法在一个开集上找到和ξ相切的一片超曲面。

从定义可以导出dα限制到ξ上时是非退化的。这表示ξ是一个该流形上的辛丛。因为辛空间是偶数维的,切触流形必须是奇数维的。

作为基本例子,考虑R,使用一下坐标

1-形式

在一点的切除平面ξ

由下列向量张成

(画一幅图像!)。实际上很容易将这个例子推广到任意R。根据达布定理,一个流形上的每个切触结构局部看起来就是这个例子。

任何n-维流形M的余切丛T M本身是一个流形(维数为2n),并且自然地支持一个恰当辛结构ω = dλ。(这个1-形式λ有时称为刘维尔形式)。在流形上取一个黎曼度量。这允许我们考虑每个余切平面中的单位球。刘维尔形式限制到单位余切丛是一个切触结构。向量场A (唯一地)由λ(A)=1和dλ定义,(A, B)=0对于所有该度量的测地流生成的向量场B成立。

另一方面,可以通过考虑 TM× R来构造一个切触流形。采用坐标(x,t),这个流形有一个切触结构

最后这个例子表明如何从辛流形得到切触流形。同样可以从切触流形构造一个辛流形,也是通过和R的直积: 若α是一个切触形式,在流形M上,则

是一个M×R上的辛流形,其中t表示在R-方向的变量。

勒让德子流形和纽结

切触流形最有意思的子空间是它的勒让德子流形。在(2n+1)-维流形上的切触超平面场的不可积性意味着没有2n-维子流形可以将它作为它的切丛,局部的都不行。但是,通常可以找到一个n-维(嵌入或者浸入)子流形,其切空间位于切触场内。勒让德子流形和辛流形的拉格朗日子流形类似。它们之间有一个精确的关系:勒让德子流形在切触流形的辛化中的提升是一个拉格朗日子流形。 勒让德子流形的最简单的例子是在一个切触三维流形中的勒让德纽结。不等价的勒让德纽结可能作为光滑纽结是等价的。

勒让德子流形是很刚性的对象;在一些情况下,子流形为了成为勒让德子流形而必须解开纽结。辛场论提供勒称为切触同调的勒让德子流形的不变量,它们有时可以用于区分拓扑等价的勒让德子流形。

Reeb向量场

若α是一个给定切触结构的切触形式,Reeb向量场R可以定义维dα的核的唯一满足α(R)=1的元素。其动力学可以用于研究切触流形的结构甚或用诸如辛场论和嵌入切触同调这类的Floer同调来研究流形本身。

历史回顾

切触几何的根源出现于克里斯蒂安·惠更斯、Barrow和牛顿的著作中。切触变换的理论(也即保持一个切触结构的变换)是索甫斯·李发展的,其目的是双重的,包括研究微分方程(例如勒让德变换)和表述射影对偶性中常见的"空间元素的变换"。



免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 几何原本
章节大纲欧几里得所著的《几何原本》共分13卷。第一卷至第六卷的内容主要为平面几何。第一卷:几何基础。本卷确立了基本定义、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理。第二卷:几何与代数。该卷主要讨论的是毕达哥拉斯学派的几何代数学,主要包括大量代数定理的几何证明。第三卷:圆与角。本卷阐述了圆、弦、割线、切线、圆心角、圆周角的一些定理。第四卷:圆与正多边形。本卷讨论了已知圆的某些内接和外切正多边形的尺规作图问题。第五卷:比例。本卷对欧多克索斯的比例理论进行阐述,第六卷:相似。本卷阐述了比例的属性,以及相似形的概念,包括了泰勒斯定理。第七卷至第九卷主要阐述了数论。第七卷:数论(一)。本卷内容包括整除性、质数、最大公约数、最小公倍数等初等数论内容。第八卷:数论(二)。本卷继续讨论初等数论,包括欧几里得辗转相除法、各种数的关系(如质数、合数、平方数、立方数等)。第九卷:数论(三)。本...
· 辛几何
名词由来symplectic这个名词,是赫尔曼·外尔所提出来的。他原来把symplecticgroup(辛群)称为complexgroup,以带出linecomplex的含意。不过complex会令人联想起complexnumber(复数),因此他将complex改为对应的希腊文symplectic一词。complex源自拉丁文complexus一词,词根是co-(共同)+plexus(编织),意为“织在一起”,相对应希腊文词根是sym-plektikos(συμπλεκτικός),结合成symplectic一词。参看辛流形哈密顿力学黎曼几何切触几何参考DusaMcDuffandD.Salamon,IntroductiontoSymplecticTopology,OxfordUniversityPress,1998.ISBN0-19-850451-9.A.T.Fomenko,Symple...
· 双曲几何
不相交的线已知在双曲几何上,至少有两条直线满足过P点平行直线R。接着在R上取一点B使得PB垂直R于B点,设在所有满足过P点且不与R相交的直线中,存在一条直线x与PB的逆时针方向夹角比其他直线都来的小,即任何一条直线若与PB的逆时针夹角小于x与PB的逆时针夹角,则必与R相交,并定义x为R的渐近线。同理,若存在另一条直线y与PB的顺时针方向夹角比其他直线都来的小,则y为R的另一条渐进线。并且,在所有满足过P点且不与R相交的直线中,唯有x与y是R的渐近线,其余的则称之为R的超平行线。由于满足小于90°且大于x与PB的夹角θ的角度有无线多个,每个角度皆可引出两条R的超平行线,因此R有无线多条超平行线。因此,对于平面上一条直线R以及线外的一点P,恰能引出两条直线过P且渐近于R,以及无限多条直线过P超平行于R。此外,渐进线和超平行线的差别还有:不论往线的哪端延伸,两条超平行线之间的距离皆会趋近于无限;...
· 蛮触
蛮触:比喻因小事争吵的双方。寓言故事:古时有在蜗牛左角上建立国家的,叫触氏;在蜗牛右角建国的,叫蛮氏。蛮触两国常为争地而战,遗尸成万。见《庄子·则阳》。宋苏轼《跋王晋卿所藏莲华经》:“乃知蜗牛之角,可以战蛮触。”
· 真相还是谎言:秦始皇跟外星人有过密切接触?
导读:《拾遗记》卷四一记载道:“有宛渠之民,乘螺旋舟而至。舟形似螺,沉行海底,而水不浸入,一名‘论波舟’。其国人长十丈,编鸟兽之毛以蔽形。始皇与之语及天地衫开之时,了如亲睹”。他们还掌握着惊人的高效能源,若用于夜间照明,只需“状如粟”的一粒,便能“辉映一堂”。倘丢于小河溪之中,则“沸沫流于数十里”。这些“宛渠之民”究竟是何许人?秦始皇认为:“此神人也”。那么,天地间真有神人吗?古往今来,众多的学者对这一记载百思不得其解。近年来,有不少学者用外星来客的观点对这一记载进行了解释:一群具有高度文明的外星人很早就来到地球并安下基地,称为宛渠国,对地球进行科学考察。这群外星人活动于占地表面积2/3的海洋中,用“形似螺”的“论波舟”作交通工具。这种交通工具水陆两用,日行万里。这就是今天所说的飞碟(UFO)。这些人“两目如电,耳出于项间,颜如童稚”。他们注意观察人类世界,一有新的动向,哪怕“去10万里”...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信