模型论
定义
结构被形式的定义于某个语言L的上下文中,它由常量符号的集合,关系符号的集合,和函数符号的集合组成。在语言L上的结构,或L-结构,由如下东西组成:
一个全集或底层集合A,它包含所有感兴趣的对象("论域"),
给L的每个常量符号一个在A中元素,
给L的每个n价函数符号一个从A到A的函数,和
给L的每个n价关系符号一个在A上的n-元关系(换句话说,A的一个子集)。
函数或关系的价有时也叫做元数(术语"一元"、"二元"和"n-元"中的那个元)。
在语言L中的理论,或L-理论,被定义为L中的句子的集合。如果句子的集合闭合于通常的推理规则之下,则被称为闭合理论。例如,在某个特定L-结构下为真的所有句子的集合是一个闭合L-理论。
L-理论T的模型由在其中T的所有句子都为真的一个L-结构组出,它通常用T-模式的方式定义。
理论被称为可满足的,如果它有模型。
例如,偏序的语言有一个二元关系≥。因而偏序的语言的结构就是带有≥所指示的二元关系的一个集合,它是偏序的理论的模型,如果此外它还满足偏序的公理。
定理
哥德尔完备性定理表明理论有一个模型当且仅当它是一致的,也就是说没有矛盾可以被该理论所证明。这是模型论的中心,因为它使得我们能够通过检视模型回答关于理论的问题,反之亦然。不要把完全性定理和完备理论的概念混淆。一个完备的理论是包含每个句子或其否命题的理论。重要的是,一个完备的协调理论可以通过扩展一个协调的理论得到。
紧致性定理说一组语句S是可满足的(即有一个模型)当且仅当S的每一个有限子集可满足。在证明理论的范围内类似的定义是下显而易见的,因为每个证明都只能有有限量的证明前提。在模型论的范畴内这个证明就更困难了。目前已知的有两个证明方法,一个是库尔特·哥德尔提出的(通过证明论),另一个是阿纳托利·伊万诺维奇·马尔采夫提出的(这个更直接,并允许我们限制最后模型的基数)。
模型论一般与一阶逻辑有关。许多模型论的重要结果(例如哥德尔完备性定理和紧致性定理)在二阶逻辑或其它可选的理论中不成立。在一阶逻辑中对于一个可数的语言,任何理论都有可数的模型。这在勒文海姆-斯科伦定理中有表达,它说对于任何可数的语言中的任何有一个无限模型都有一个可数的初等子模型。
莫雷(Morley)证明了著名的范畴定理。即对于可数语言的任何可数完备理论,如果它在某个不可数基数上是范畴的,则它在所有不可基数上都是范畴的。这个定理极大的刺激了模型论的发展,产生了后来的所谓稳定性理论(stable theory)。
近来模型论更加着重于对于其它数学分支,尤其是代数和代数几何的应用。
参考文献
Wilfrid Hodges, A shorter model theory (1997) Cambridge University Press ISBN 0-521-58713-1
参见
证明论
递归论
一阶谓词逻辑
Tarski语义
紧致性定理
可靠性定理
哥德尔完全性定理
Craig插入定理
Beth可定义性定理
高阶逻辑
类论
哥德尔不完全性定理
可公理化类
超实数
基本嵌入
饱和模型
力迫 (数学)
有限模型论
描述复杂度
Kripke语义
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值