族谱网 头条 人物百科

模拟数字转换器

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:404
转发:0
评论:0
概念分辨率一个具有8个离散信号值输出的模拟数字转换器模拟数字转换器的分辨率是指,对于允许范围内的模拟信号,它能输出离散数字信号值的个数。这些信号值通常用二进制数来存储,因此分辨率经常用比特作为单位,且这些离散值的个数是2的幂指数。例如,一个具有8位分辨率的模拟数字转换器可以将模拟信号编码成256个不同的离散值(因为2=256),从0到255(即无符号整数)或从-128到127(即带符号整数),至于使用哪一种,则取决于具体的应用。分辨率同时可以用电气性质来描述,使用单位伏特。使得输出离散信号产生一个变化所需的最小输入电压的差值被称作最低有效位(Leastsignificantbit,LSB)电压。这样,模拟数字转换器的分辨率Q等于LSB电压。模拟数字转换器的电压分辨率等于它总的电压测量范围除以离散电压间隔数:这里N是离散电压间隔数,EFSR是总的电压测量范围,EFSR由下式给出这里VRefH...

概念

分辨率

模拟数字转换器

一个具有8个离散信号值输出的模拟数字转换器

模拟数字转换器的分辨率是指,对于允许范围内的模拟信号,它能输出离散数字信号值的个数。这些信号值通常用二进制数来存储,因此分辨率经常用比特作为单位,且这些离散值的个数是2的幂指数。例如,一个具有8位分辨率的模拟数字转换器可以将模拟信号编码成256个不同的离散值(因为2 = 256),从0到255(即无符号整数)或从-128到127(即带符号整数),至于使用哪一种,则取决于具体的应用。

分辨率同时可以用电气性质来描述,使用单位伏特。使得输出离散信号产生一个变化所需的最小输入电压的差值被称作最低有效位( Least significant bit, LSB )电压。这样,模拟数字转换器的分辨率 Q 等于LSB电压。模拟数字转换器的电压分辨率等于它总的电压测量范围除以离散电压间隔数:

这里 N 是离散电压间隔数, E FSR 是总的电压测量范围, E FSR 由下式给出

这里 V RefHi 和 V RefLow 是转换过程允许电压的上下限。

正常情况下,电压间隔数等于

这里 M 是模拟数字转换器的分辨率,以比特为单位。

响应类型

大多数模拟数字转换器的响应类型为线性,这里的“线性”是指,输出信号的大小与输入信号的大小成线性比例。

一些早期的转换器的响应类型呈对数关系,由此来执行A-law算法或μ-law算法编码。这些编码现在由高分辨率的线性模拟数字转换器(例如12或16位)达到,并将其8为编码输出值进行绘制。

误差

模拟数字转换器的误差有若干种来源。量化错误和非线性误差(假设这个模拟数字转换器标称具有线性特征)是任何模拟数字转换中都存在的内在误差。也有一种被称作孔径误差( aperture error ),它是由于时钟的不良振荡,且常常在对时域信号数字化的过程现。时钟的不良振荡所引起的孔径误差可以等效到ADC的采样保持器中,这个时钟称之为采样信号而采样信号的相位不确定性就使得实际的采样时间是随机变化的,在对一个动态变化的信号采样时,我们认定的采样信号 V i n {\displaystyle V_{in}} 可能变成了 V i n ( t − − --> Δ Δ --> t ) {\displaystyle V_{in}(t-\Delta t)} ,其中 Δ Δ --> t {\displaystyle \Delta t} 是一个具有统计规律的随机时延。如果我们将时钟的这种相位不确定性看作是一种相位噪声,那么这个相位噪声会由采样过程传递到原始信号中去。这种误差就是上述的孔径误差或孔径抖动误差。孔径抖动误差必然会带来噪声。下面简单说明时钟抖动与噪声的关系。 设信号为 v ( t ) {\displaystyle v(t)} ,那么若由于在孔径抖动造成的时间上的不确定量 Δ Δ --> t {\displaystyle \Delta t} 会造成采样信号的不确定度 Δ Δ --> v ( t ) {\displaystyle \Delta v(t)} ,用数学公式可以表示为:

当时间抖动无偏时,那么有:

再假设 Δ Δ --> t {\displaystyle \Delta t} 为一微小量,那么

对于一个确定的信号,当 t {\displaystyle t} 确定后,上式中的 v ( t ) {\displaystyle v(t)} 为一个确定量,而 Δ Δ --> t {\displaystyle \Delta t} 是有统计规律的。因此两边取期望,得到:

且有:

由式4和式5,并假设 Δ Δ --> v ( t ) {\displaystyle \Delta v(t)} 和 Δ Δ --> t {\displaystyle \Delta t} 都是零均值随机量,这时可以得到:

对两端求时间平均:

一般的,有 σ σ --> t 2 ( t ) = c o n s t {\displaystyle \sigma _{t}^{2}(t)=const} ,即 σ σ --> t 2 ( t ) = σ σ --> t 2 {\displaystyle \sigma _{t}^{2}(t)=\sigma _{t}^{2}} ,上式可以写作:

若原始信号有各态历经特性,那么上式的左边可以理解为噪声的功率。于是

因此,孔径抖动所引入的噪声大小与信号的导数有关,对于高动态的信号,即其导数大的信号,其噪声的功率在孔径误差相同时会更大。

采样率

模拟信号在时域上是连续的,因此可以将它转换为时间上连续的一系列数字信号。这样就要求定义一个参数来表示新的数字信号采样自模拟信号速率。这个速率称为转换器的采样率或采样频率。

可以采集连续变化、带宽受限的信号(即每隔一时间测量并存储一个信号值),然后可以通过插值将转换后的离散信号还原为原始信号。这一过程的精确度受量化误差的限制。然而,仅当采样率比信号频率的两倍还高的情况下才可能达到对原始信号的忠实还原,这一规律在采样定理有所体现。

由于实际使用的模拟数字转换器不能进行完全实时的转换,所以对输入信号进行一次转换的过程中必须通过一些外加方法使之保持恒定。常用的有采样-保持电路 ,在大多数的情况里,通过使用一个电容器可以存储输入的模拟电压,并通过开关或门电路来闭合、断开这个电容和输入信号的连接。许多模拟数字转换集成电路在内部就已经包含了这样的采样-保持子系统。

混叠

所有的模拟数字转换器以每隔一定时间进行采样的形式进行工作。因此,它们的输出信号只是对输入信号行为的不完全描述。在某一次采样和下一次采样之间的时间段,仅仅根据输出信号,是无法得知输入信号的形式的。如果输入信号以比采样率低的速率变化,那么可以假定这两次采样之间的信号介于这两次采样得到的信号值。然而,如果输入信号改变过快,则这样的假设是错误的。

如果模拟数字转换器产生的信号在系统的后期,通过数字模拟转换器,则输出信号可以忠实地反映原始信号。如经过输入信号的变化率比采样率大得多,则是另一种情况,模拟数字转换器输出的这种“假”信号被称作“混叠”。混叠信号的频率为信号频率和采样率的差。例如,一个2千赫兹的正弦曲线信号在采样率在1.5千赫兹采样率的转换后,会被重建为500赫兹的正弦曲线信号。这样的问题被称作“混叠”。

为了避免混叠现象,模拟数字转换器的输入信号必须通过低通滤波器进行滤波处理,过滤掉频率高于采样率一半的信号。这样的滤波器也被称作反锯齿滤波器。它在实用的模拟数字转换系统中十分重要,常在混有高频信号的模拟信号的转换过程中应用。

尽管在大多数系统里,混叠是不希望看到的现象,值得注意的是,它可以提供限制带宽高频信号的同步向下混合( simultaneous down-mixing ,请参见采样过疏和混频器)。

Dither信号

在模拟数字转换器中,工作状况可以通过引入抖动信号( Dither )得到改善。Dither信号是在转换前混入输入信号的微量随机噪声(白噪声)。它的作用效果是输入信号极小时,造成LSB的状态随机在0和1之间振荡,而不是处于某一个固定值。这样做可以扩展模拟数字转换器可以转换的有效范围,而不需要在低输入的情况下完全切断这个信号,不过这样做的代价是噪音会小幅增加,量化误差会扩散到一系列噪音信号值。在时间范围上,还是可以较为精确地反映信号在时间上的变化。在输出端,使用一个适当的电子滤波器可以还原这个小幅信号波动。

没有加入Dither信号的低幅音频信号听起来十分扭曲和令人不快。因为如果没有Dither信号,低幅信号可能造成最低有效位固定在0或者1。引入Dither信号之后,音频的实际振幅可以通过在取一段时间上实际量化的采样和一系列Dither信号的采样的平均值来计算。Dither信号在一些集成系统里也有应用,例如电度表,它可以使信号值产生比模拟数字转换器最低有效位更为精确的结果。注意引入Dither信号只能增加采样器的分辨率,但是不能增加其线性的性质,因此精确度不一定能够改善。

过采样

通常的,为了经济,信号以允许的最低采样率被采样,造成的结果是产生在转换器整个通带上分布的白噪声。如果信号以高于奈奎斯特频率的频率被采样、然后进行数字滤波,才从而保证限制信号带宽,则又以下几个好处:

数字滤波器具有比模拟滤波器更好的性质(更锐利的滚降、相位),所有可以构成更锐利的反锯齿滤波器,从而可以对信号进行向下采样,给出更好的结果;

一个20位的模拟数字转换器可以当做一个24位、具有256倍过密采样的模拟数字转换器使用;

尽管有量化噪声,信噪比还是会比使用整个可用的带宽更高。使用了此技术后,可能会获得一个比单独使用转换器更高的分辨率;

每倍频的过密采样(在很多应用中还不够)的信噪比的改善为3分贝(等效于0.5位)。因此,过密采样通常与噪音信号整形耦合在一起。通过噪音整形,改善可以达到每倍频6L+3 dB(这里L是用于噪音整形的环路滤波器的阶数,例如,一个2阶环路滤波器可以提供15分贝每倍频的改善)。

相对速度和精确度

模拟数字转换器的速度根据其种类有较大的差异。威尔金森模拟数字转换器受到其时钟率的限制。目前,频率超过300兆赫兹已经成为可能。转换所需的时间这届与沟道的数量成比例。对于一个逐次逼近( successive-approximation )模拟数字转换器,其转换时间与沟道数量的对数成比例。这样,大量沟道可以使逐次逼近转换器比威尔金森转换器快。然而,威尔金斯转换器消耗的时间是数字的,而逐次逼近转换器是模拟的。由于模拟的自身就比数字的更慢,当沟道数量增加,所需的时间也增加。这样,其在工作时具有相互竞争的过程。Flash模拟数字转换器是这三种里面最快的一种,转换基本是以一个单独平行的过程。对于一个8位单元,转换可以在十几个纳秒的时间内完成。

人们期望在速度和精确度之间达到一个最佳平衡。Flash模拟数字转换器具有与比较器水平的漂移和不确定性,这将导致沟道宽度的不均一性。结果是Flash模拟数字转换器的线性不佳。对于逐次逼近模拟数字转换器,糟糕的线性也很明显,不过这还是比Flash模拟数字转换器好一点。这里,非线性是源于减法过程的误差积累。在这一点上,威尔金森转换器是表现最好的。它们拥有最好的微分非线性。其他种类的转换器则要求沟道平滑,以达到像威尔金森转换器的水平。

分类

直接转换模拟数字转换器( Direct-conversion ADC ),或称Flash模拟数字转换器( Flash ADC ( 英语 : Flash ADC ) )

循续渐近式模拟数字转换器( Successive approximation ADC )

跃升-比较模拟数字转换器( Ramp-compare ADC )

威尔金森模拟数字转换器( Wilkinson ADC )

积分模拟数字转换器( Integrating ADC )

Delta编码模拟数字转换器( Delta-encoded ADC )

管道模拟数字转换器( Pipeline ADC )

Sigma-Delta模拟数字转换器( Sigma-delta ADC )

时间交织模拟数字转换器( Time-interleaved ADC )

带有即时FM段的模拟数字转换器

也有利用电子技术和其他技术结合的转换器:

时间延伸模拟数字转换器( Time stretch analog-to-digital converter, TS-ADC

商用的模拟数字转换器

这类产品大多是集成电路。

大多数转换器具有6至24位的分辨率,且每秒进行少于百万采样。当要求更高的分辨率时会产生热噪声( Thermal noise )。对于音频应用,在室温状态,这样的噪声通常小于1微伏的白噪声。如果最大有效位对应一个标准的2伏输出信号,对于有限噪声信号的转换低于20至21位,可以不需要使用抖动。截止到2002年2月,百万级、十亿级采样率已经可使用。在数码摄像机、视频捕获卡、电视调谐卡等需要转换全速模拟视频至数字视频文件的设备中,百万采样率的转换器的应用十分必要。商用转换器的输出信号通常具有±0.5至1.5的最低有效位误差。

在很多情况中,集成电路中最昂贵的部分是插脚( pins ),因为它们让整个封装变得更大,且每一个插脚必须和集成电路中的硅连接。为了节省插脚,常用的做法是每一个插脚与计算机进行串行通信,每当时钟信号改变到下一个状态时,传输一个位的电压信号,比如,从0伏特到5伏特。这样做可以为模拟数字转换器节省很多插脚,而且在许多情况里,可以避免将整个设计复杂化(即便是微处理器,如果使用存储器映射输入输出( Memory-mapped I/O ),就只需要一个端口的几个位来进行串行通信)。

商用的模拟数字转换器经常具有几个输入端口连接到同一个转换器,采用的技术通常是利用模拟数据选择器进行多路复用。不同的型号可能还会包含采样-保持电路,放大器和差分信号输入(输入量表示为两个端口电压的差值)。

应用

音乐录制

模拟数字转换器对于目前的音乐复制技术至关重要。由于大多数音乐都在计算机上制作,当模拟信号被录制,就需要一个模拟数字转换器来创建脉冲编码调制数据流,并可以以数字音乐格式刻录在CD上。

在音乐制作中使用的模拟数字转换器可以以最高192千赫兹的频率进行采样。高带宽净空允许使用更便宜、更快的反锯齿滤波器。过密采样的支持者强调,这样更浅的反锯齿滤波器对声音品质可以产生更少的负面效应,因为它们具有更舒缓的斜率。其他的一些人则完全支持使用无滤波器的模拟数字转换器,称使用反锯齿滤波器比转换前使用砖墙式滤波器对音质产生更小的损坏。有大量文献讨论了此类问题,不过商业考虑才是最有影响的。大多数高质量录音棚以24位/192-176.4千赫兹脉冲编码调制或DSD来录制音乐,然后向下采样或有损压缩以进行红皮书CD的44.1千赫兹 ,或针对广播电视应用的48千赫兹。

数字信号处理

在模拟信号需要以数字形式处理、存储或传输时,模拟数字转换器几乎必不可少。例如,快速视频模拟数字转换器在电视调谐卡中得到了应用。8,10,12或16位的慢速在片( On-chip )模拟数字转换器在微控制器里十分普遍。速度很高的模拟数字转换器在数字示波器里是必需的,另外在软件无线电里也很关键。

参考文献

Allen, Phillip E.; Holberg, Douglas R., CMOS Analog Cirt Design, ISBN 0-19-511644-5

Kester, Walt (编),The Data Conversion Handbook, Elsevier: Newnes, 2005, ISBN 0-7506-7841-0

Johns, David; Martin, Ken, Analog Integrated Cirt Design, ISBN 0-471-14448-7

Knoll, Glenn F., Radiation Detection and Measurement 2nd, New York: John Wiley & Sons: 665–666, 1989

Liu, Mingliang, Demystifying Switched-Capacitor Cirts, ISBN 0-7506-7907-7

Nicholson, P. W., Nuclear Electronics, New York: John Wiley & Sons: 315–316, 1974

Norsworthy, Steven R.; Schreier, Richard; Temes, Gabor C., Delta-Sigma Data Converters, IEEE Press, 1997, ISBN 0-7803-1045-4

Razavi, Behzad, Principles of Data Conversion System Design, New York, NY: IEEE Press, 1995, ISBN 0-7803-1093-4

Staller, Len,Understanding analog to digital converter specifications, Embedded Systems Design, February 24, 2005

Walden, R. H.,Analog-to-digital converter survey and analysis, IEEE Journal on Selected Areas in Communications, 1999, 17 (4): 539–550, doi:10.1109/49.761034 , ISSN 0733-8716


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 数字模拟转换器
概述数字模拟转换器将抽象的有限精度数据(例如固定小数点的二进制数)转换到具体的物理量(例如电压)。特别的,数字模拟转换器常被用来将有限精度时间序列转换到连续的物理信号。典型的数字模拟转换器将抽象数转换为具体的脉冲序列,然后利用插值法输出近似连续的量。其他的转换方法(例如基于ΔΣ调变的方法)则产生脉冲密度调制(Pulse-densitymodulation,PDM)进而产生平滑的连续信号。按照采样定理,数字模拟转换器能够重建原始信号的条件是,信号带宽满足特定的条件(例如,基频信号的带宽小于奈奎斯特频率)。数字采样会引入量化误差,它表现为混入所需目标信号的噪声。工作方式传统的实用数字模拟转换器的阶跃输出示意图数字模拟转换器以均匀时间间隔输出模拟电压值。其输入值以一定时序输入并锁存在转换器中,然后每完成一次转换,转换器的输出值都迅速从上一个输出值更新为当前锁存数值所对应的模拟信号。这样的效果是,...
· 催化转换器
概念触媒转换器内部催化转换器是利用催化剂的作用将排气中的CO、HC和NOx转换为对人体无害的气体的一种排气净化装置,也称作催化净化转换器。金属铂、钯或铑均可作催化剂。在化学反应过程中,催化剂只促进反应的进行,不是反应物的一部分。分类催化转换器有氧化催化转换器和三元催化转换器。氧化催化转换器只将排气中的CO和HC(碳氢化合物)氧化为CO2和H2O,因此这种催化转换器也称做二元催化转换器。必须向氧化催化转换器供给二次空气作为氧化剂,才能使其有效地工作。三元催化转换器可同时减少CO、HC和NOx的排放,它以排气中的CO和HC作为还原剂,把NOx还原为氮(N2)和氧(O2),而CO和HC在还原反应中被氧化为CO2和H2O。当同时采用两种转换器时,通常把两者放在同一个转换器外壳内,而且三元催化转换器置于氧化催化转换器前面。排气经过三元催化转换器之后,部分未被氧化的CO和HC继续在氧化催化转换器中与供...
· 交流/交流转换器
分类交流/交流转换器可以依以下的方式分类:间接交流/交流转换器,也称为交流/直流/交流转换器,或是变频器,也就是有整流器、直流链及逆变器的转换器循环换流器(英语:Cycloconverter)复合矩阵转换器矩阵转换器(英语:Matrixconverters)三相交流/交流转换器的分类有直流链的转换器(回昇式)的电压源变频器电流源变频器有直流链的转换器有二种:电压源变频器(VSI):其整流器由二极管电桥组成,直流链则为并接的电容器。电流源变频器(CSI):其整流器由相控的切换元件,直流链则为一个或二个串接的电感器,连结整流器和逆变器。若马达需要动态刹车,可以用刹车斩波器及电阻器并联在整流器上来达成。另一种刹车方式是在整流器上反向并联闸流体,使能量可以回到交流电源端。不过这种相控闸流体为基础的整流器,在轻载时对电源电压的歧变比二极管整流器要大,功率因素也比较小。若交流/交流转换器希望有近似弦波...
· 模拟信号
概述模拟信号利用对象的一些物理属性来表达、传递信息。例如,非液体气压表利用指针螺旋位置来表达压强信息。在电学中,电压是模拟信号最普遍的物理媒介,除此之外,频率、电流和电荷也可以被用来表达模拟信号。任何的信息都可以用模拟信号来表达。这里的信号常常指物理现象中被测量对变化的响应,例如声音、光、温度、位移、压强,这些物理量可以使用传感器测量。模拟信号中,不同的时间点位置的信号值可以是连续变化的;而对于数字信号,不同时间点的信号值总是处于预先设定的离散点,因此如果物理量的真实值不能在这些预设值中被找到,那么这时数字信号就与真实值存在一定的偏差。分辨率理论上,模拟信号的分辨率趋近无穷大。不过在实际情况中,模拟信号的分辨率常常会受噪声和信号摆率(slewrate)的限制。因此,现实中的模拟信号和数字信号的分辨率和带宽都有一定的限制。在一些非常复杂的模拟系统中,诸如非线性问题和噪声等效应会降低模拟信号的...
· 模拟电路
固有的噪声模拟电路系统处理的信号总是包含着一定的噪声。这意味着,电路系统随机的热偏差将造成模拟信号随机的偏差、扰动。模拟电路系统中各个不同部分的偏差积累起来,可以使偏差量的负面影响常常会比较显著,这些偏差将形成噪声。由于模拟信号在电路中常常会通过电子放大器,噪声会被不断地放大,再加上原始信号在长距离传输的过程中也会有损耗,因此这些随机的噪声会造成信号严重失真。模拟电路中噪声的来源还来自于外部信号干扰以及设计欠佳的电子元件。通过使用屏蔽导线,或者在电路中引入低噪音放大器,可以尽量缓解噪声的负面影响。与数字电路的比较在模拟电路和数字电路中,信号的表达方式不同。对模拟信号能够执行的操作,例如放大、滤波、限幅等,都可以对数字信号进行操作。事实上,所有的数字电路从根本上来说都是模拟电路,其基本电学原理,都与模拟电路相同。互补式金属氧化物半导体就是由两个模拟的金属氧化物半导体场效应管构成的,其对称、互...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信