族谱网 头条 人物百科

数学教育

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:245
转发:0
评论:0
历史沿革基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。第一本英语的数学教科书由RobertRecorde出版,从1540年的艺术的基础(TheGroundeofArtes)开始。在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡...

历史沿革

基础数学是多数古文明的教育系统的一部分,包括古希腊,罗马帝国,吠陀社会和古埃及。在多数情况下,只有足够高地位,财富或等级的男性孩童才能接受正规教育。

在柏拉图把文科分成三学科和四学科的划分中,四学科包括数学的算术和几何领域。这个结构在中世纪欧洲所发展的经典教育的体系得到了延续。几何的教育基于欧几里得的原本。商业的学徒,如石匠,商人和借贷者需要学习和他们的行业相关的这种实用数学。

第一本英语的数学教科书由Robert Recorde出版,从1540年的艺术的基础(The Grounde of Artes)开始。

在文艺复兴时期,数学的学术地位下降了,因为它和手工业和贸易紧密相关。虽然在欧洲的大学里继续教授数学,它被视为自然哲学,形而上学和道德哲学的辅助。

这个趋势在十七世纪得到某种逆转,阿伯丁大学在1613年建立数学主席职位,随后有牛津大学在1619年建立几何主席职位和剑桥大学在1662年设立的卢卡逊教授。但是,数学一般不在大学之外教授。例如牛顿在他在1661年进入剑桥三一学院之前没有受过正规数学教育。

在十八世纪和十九世纪,工业革命导致城市人口大量增加。基本的数字技能,如描述时间,数钱和简单算术,称为新的城市生活的基本能力。在新的公共教育系统中,数学成了从幼年开始的课程的中心部分。

到二十世纪,数学成了所有发达国家的核心课程的一部分。但是,多样和变化着的关于数学教育的目的的思想导致所采用的内容和方法几乎没有任何整体上的一致性。

目的

在不同的时期在不同的文化和国家中,数学教育试图达到不同的目标。这些目标包括:

教授给所有学生的数字技巧。

教授给大部分学生的实用数学(算术,基础代数,平面和立体几何,三角学),使得他们有能力从事贸易或手工业。

早期的抽象代数概念教育(例如集合和函数)

选择性的数学领域的教育(例如欧式几何)作为公理化体系的实例和演绎推理的一个模型

选择性的数学领域的教育(例如微积分)作为现代社会的智力成就的一个实例

教授给希望以科学为职业的学生的高等数学

数学教育的方式和变化的目标一致。

标准

绝大部分的历史时期,数学教育的标准是地域性的,由不同的学校或教师根据学生的水平和兴趣来设置。

在现代,有一种趋势是建立地区或国家标准,通常隶属于更广泛的学校教学大纲。例如在英国,数学教育的标准是英国国家教育大纲的一部分[1]。在美国,美国数学教师国家委员会[2]制定了一系列文档,最近的有学校数学的原则和标准[3],为学校数学的总体目标达成了一致。更具体的教学标准一般在州一级制定 - 譬如在加利福尼亚,加州教育理事会为数学教育制定了标准[4].

水平

不同水准的数学教授给不同年龄的学生。一个大致的对算术和代数的子课题的教学年龄的参考如下:

加法:5-7岁;更多的位数8-9岁

减法:5-7岁;更多的位数8-9岁

乘法:7-8岁;更多的位数9-10岁

除法:8岁;更多的位数9-10岁

简单代数:11-12岁

代数:13岁以上

方法

任何特定环境下的方法很大程度上由相关的教育系统所设定的目标所决定。教授数学的方法包括:

经典教育 -中世纪的经典教育大纲中的数学教育通常基于欧几里得的《几何原本》,它被作为演绎推理的范式来教授。

死记硬背 - 通过重复和记忆来教授数学结果,定义和概念。通常用于乘法表。

习题 - 通过完成大量同类的练习来传授数学技巧,例如加带分数或者解二次方程。例如,古氏积木(Cuisenaire rods)来教授分数。

问题求解 - 通过给学生无标准答案,不同寻常的,和有时候无解的问题来培养数学的智力,创造力和启发式思考。问题的范围可以从应用题(英语:Word problem (mathematics education))到像国际数学奥林匹克竞赛这样的国际数学竞赛问题。

新数学 - 一种专注于集合论这样的抽象概念而不是实际应用的教授数学的方法。

历史方法 - 教授在一个历史,社会和文化背景下数学的发展过程。比纯粹抽象的方式提供了更多的人文乐趣。

这些方法不是所有的,而且任何数学教育系统很可能包含很多不同的方法。

数学教师

这些人曾在一生中某一阶段教授数学,但他们在其他方面更为著名:

Lewis Carroll,英国作家Charles Dodgson的笔名,曾在牛津基督教堂讲授数学

道尔顿, 英国化学家和物理学家,曾在曼彻斯特,牛津和约克的学校和大学教数学。

Tom Lehrer,美国歌曲作家和讽刺作家,曾在哈佛和麻省理工学院教数学。

Georg Joachim Rheticus,奥地利绘图家,哥白尼的学生,曾在Wittenberg大学教数学。

Edmund Rich, 13世纪坎特伯雷大主教,在牛津和巴黎的大学教过数学。

Archie Williams,美国运动员,奥运金牌得主,在加里福尼亚高中教过数学。

相关条目

美国数学教育相关主题和数学的症状其他相关领域


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 杰出的数学教育家杨辉,他对数学的贡献有哪些?
杨辉,中国南宋末年杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。其中在《详解九章算法》一书中载有二项(a+b)n展开系数的数字三角形,被称为“杨辉三角”,它的发现比国外同类发现至少早300年。杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。他在《续古摘奇算法》中介绍了各种形式的”纵横图”及有关的构造方法,同时”垛积术”是杨辉继沈括”隙积术”后,关于高阶等差级数的研究。杨辉在"纂类”中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程...
· 元代数学家、教育家朱世杰生平简介
朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。元统一中国后,朱世杰曾以数学家的身份周游各地20余年,向他求学的人很多,他到广陵(今扬州)时“踵门而学者云集”。他全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》(3卷),又写成四元术的代表作--《四元玉鉴》(3卷),先后于:1299年和1303年刊印.《算学启蒙》由浅入深,从一位数乘法开始,一直讲到当时的...
· 数学
词源西方语言中“数学”(希腊语:μαθηματικά)一词源自于古希腊语的μάθημα(máthēma),其有“学习”、“学问”、“科学”,以及另外还有个较狭义且技术性的意思-“数学研究”,即使在其语源内。其形容词μαθηματικός(mathēmatikós),意思为和学习有关的或用功的,亦会被用来指数学的。其在英语中表面上的复数形式,及在法语中的表面复数形式lesmathématiques,可溯至拉丁文的中性复数mathematica,由西塞罗译自希腊文复数ταμαθηματικά(tamathēmatiká),此一希腊语被亚里士多德拿来指“万物皆数”的概念。汉字表示的“数学”一词大约产生于中国宋元时期。多指象数之学,但有时也含有今天上的数学意义,例如,秦九韶的《数学九章》(《永乐大典》记,即《数书九章》也被宋代周密所著的《癸辛杂识》记为《数学大略》)、《数学通轨》(明代柯尚迁著)、...
· 元数学
参考资料DouglasHofstadter,1980.《哥德尔、埃舍尔、巴赫》.VintageBooks.Aimedatlaypeople.StephenColeKleene,1952.《IntroductiontoMetamathematics》.NorthHolland.Aimedatmathematicians.
· 数学物理
主要内容微分方程的解算:很多物理问题,比如在经典力学和量子力学中求解运动方程,都可以被归结为求解一定边界条件下的微分方程。因此求解微分方程成为数学物理的最重要组成部分。相关的数学工具包括:场的研究(场论):场是现代物理的主要研究对象。电动力学研究电磁场;广义相对论研究引力场;规范场论研究规范场。对不同的场要应用不同的数学工具,包括:对称性的研究:对称性是物理中的重要概念。它是守恒律的基础,在晶体学和量子场论中都有重要应用。对称性由对称群或相关的代数结构描述,研究它的数学工具是:作用量(action)理论:作用量理论被广泛应用于物理学的各个领域,例如分析力学和路径积分。相关的数学工具包括:参见希尔伯特第六问题理论物理学文献Abraham,Ralph;Marsden,JerroldE.,Foundationsofmechanics:amathematicalexpositionofclassi...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信