平面
由一点和一个法向量决定的平面
对于一点 P 0 = ( x 0 , y 0 , z 0 ) {\displaystyle P_{0}=(x_{0},y_{0},z_{0})} 和一个向量 n → → --> = ( a , b , c ) {\displaystyle {\vec {n}}=(a,b,c)} ,平面方程为
这是穿过点 P 0 {\displaystyle P_{0}} 并垂直于向量 n → → --> {\displaystyle {\vec {n}}} 的平面。
通过三点的平面
穿过三点 P 1 = ( x 1 , y 1 , z 1 ) {\displaystyle P_{1}=(x_{1},y_{1},z_{1})} , P 2 = ( x 2 , y 2 , z 2 ) {\displaystyle P_{2}=(x_{2},y_{2},z_{2})} 和 P 3 = ( x 3 , y 3 , z 3 ) {\displaystyle P_{3}=(x_{3},y_{3},z_{3})} 的平面的方程可以表述为如下行列式:
一点到平面的距离
对于一点 P 1 = ( x 1 , y 1 , z 1 ) {\displaystyle P_{1}=(x_{1},y_{1},z_{1})} 和一个平面 a x + b y + c z + d = 0 {\displaystyle ax+by+cz+d=0} ,从点 P 1 {\displaystyle P_{1}} 到平面的距离是:
两个平面的夹角
两个相交平面的夹角,称为两面角(dihedral angle),可以用平面方程 a 1 x + b 1 y + c 1 z + d 1 = 0 {\displaystyle a_{1}x+b_{1}y+c_{1}z+d_{1}=0} 和 a 2 x + b 2 y + c 2 z + d 2 = 0 {\displaystyle a_{2}x+b_{2}y+c_{2}z+d_{2}=0} 给出如下:
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值