族谱网 头条 人物百科

随机数

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:503
转发:0
评论:0
密码学范畴的随机数根据密码学原理,随机数的随机性检验可以分为三个标准:统计学伪随机性。统计学伪随机性指的是在给定的随机比特流样本中,1的数量大致等于0的数量,同理,“10”“01”“00”“11”四者数量大致相等。类似的标准被称为统计学随机性。满足这类要求的数字在人类“一眼看上去”是随机的。密码学安全伪随机性。其定义为,给定随机样本的一部分和随机算法,不能有效的演算出随机样本的剩余部分。真随机性。其定义为随机样本不可重现。实际上衹要给定边界条件,真随机数并不存在,可是如果产生一个真随机数样本的边界条件十分复杂且难以捕捉(比如计算机当地的本底辐射波动值),可以认为用这个方法演算出来了真随机数。相应的,随机数也分为三类:伪随机数:满足第一个条件的随机数。密码学安全的伪随机数:同时满足前两个条件的随机数。可以通过密码学安全伪随机数生成器计算得出。真随机数:同时满足三个条件的随机数。随机数在密码学...

密码学范畴的随机数

根据密码学原理,随机数的随机性检验可以分为三个标准:

统计学伪随机性。统计学伪随机性指的是在给定的随机比特流样本中,1的数量大致等于0的数量,同理,“10”“01”“00”“11”四者数量大致相等。类似的标准被称为统计学随机性。满足这类要求的数字在人类“一眼看上去”是随机的。

密码学安全伪随机性。其定义为,给定随机样本的一部分和随机算法,不能有效的演算出随机样本的剩余部分。

真随机性。其定义为随机样本不可重现。实际上衹要给定边界条件,真随机数并不存在,可是如果产生一个真随机数样本的边界条件十分复杂且难以捕捉(比如计算机当地的本底辐射波动值),可以认为用这个方法演算出来了真随机数。

相应的,随机数也分为三类:

伪随机数:满足第一个条件的随机数。

密码学安全的伪随机数:同时满足前两个条件的随机数。可以通过密码学安全伪随机数生成器计算得出。

真随机数:同时满足三个条件的随机数。

随机数在密码学中非常重要,保密通信中大量运用的会话密钥的生成即需要真随机数的参与。如果一个随机数生成算法是有缺陷的,那么会话密钥可以直接被推算出来。若果真发生这种事故,那么任何加密算法都失去了意义。

密码学中大量利用伪随机数生成器的应用还有流密码。流密码的著名例子是RC4。流密码的原理是利用一个密码学安全的伪随机数生成器根据密钥产生一串密码学安全的伪随机比特列,再将消息与上述随机比特列按位异或运算。

目前没有数学证明表示密码学安全的伪随机数生成器是确实存在的。其存在性证明涉及到P和的数学难题。

密码学以外的随机数

随机数是专门的随机试验的结果。

在统计学的不同技术中需要使用随机数,比如在从统计总体中抽取有代表性的样本的时候,或者在将实验动物分配到不同的试验组的过程中,或者在进行蒙特卡罗模拟法计算的时候等等。

产生随机数有多种不同的方法。这些方法被称为随机数生成器。随机数最重要的特性是它在产生时后面的那个数与前面的那个数毫无关系。

真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。这样的随机数生成器叫做物理性随机数生成器,它们的缺点是技术要求比较高。

在实际应用中往往使用伪随机数就足够了。这些数列是“似乎”随机的数,实际上它们是通过一个固定的、可以重复的计算方法产生的。它们不真正地随机,因为它们实际上是可以计算出来的,但是它们具有类似于随机数的统计特征。这样的生成器叫做伪随机数生成器。

在真正关键性的应用中,比如在密码学中,人们一般使用真正的随机数。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 伪随机数
特性用来计算伪随机数的函数被称为随机函数,使用随机函数产生随机数的算法称为随机数生成器。一些随机函数是周期性的,虽然一般来说使用非周期性的函数要好得多,但周期性的随机函数往往快得多。有些周期函数的系数可以调整,之后它们的周期非常大,基本上与非周期的函数效果一样。使用在电脑模拟中伪随机数用来模拟产生随机的过程,背景噪声产生器中也可应用伪随机数。由于伪随机数不是真的随机数,在有些方面它们不能被使用,例如在密码学中使用伪随机数要小心,因为其可计算性是一个可以攻击的地方。统计学、蒙特·卡罗方法上使用的伪随机数也必须挑选周期极长、随机性够高的随机函数,以确保计算结果有足够的随机性。伪随机数的一个特别大的优点是它们的计算不需要外部的特殊硬件的支持,因此在计算机科学中伪随机数依然被使用。真正的随机数必须使用专门的设备,比如热噪讯号、量子力学的效应、放射性元素的衰退辐射,或使用无法预测的现象,譬如用户按键...
· 密码学安全伪随机数生成器
随机性密码学领域的随机性一般分为:统计学伪随机性:随机比特序列匹配在统计学的随机的定义。匹配该定义的比特序列的特点是,序列中“1”的数量约等于“0”的数量;同理,“01”、“00”、“10”、“11”的数量大致相同,以此类推。匹配该类别的随机数生成方法的例子有线性同余伪随机数生成器。密码学安全伪随机性:除了满足统计学伪随机性外,还需满足“不能通过给定的随机序列的一部分而以显著大于12{\displaystyle{\frac{1}{2}}}的概率在多项式时间内演算出比特序列的任何其他部分”。匹配该类别的密码学安全伪随机数生成器的例子如Trivium(算法)中的CSPRNG部分、SHA-2家族函数和计数器亦可被绑定以构建类似强度的CSPRNG。真随机性:除满足以上两点,还需要具备“不可重现性”。换言之,不能通过给定同样的数据而多次演算出同一串比特序列。由于计算机算法均具备确定的特性,所以真随机...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信