族谱网 头条 人物百科

星系自转问题

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:341
转发:0
评论:0
历史和问题的描述在1959年,LouiseVolders指出螺旋星系M33的转动没有遵循开普勒定律,到了1970年代,这个结果已扩展至许多其他的螺旋星系。基于这样的模型,在螺旋盘面上的物质(像是恒星和气体)环绕核心旋转的轨道应该与太阳系的行星相似,也就是说,都应该遵循牛顿力学。基于此,可以预期在足够远的距离上环绕星系中心天体的平均轨道速度应该依照质量分布的递减,与轨道距离的平方根成反比(图一中的虚点线)。在发现这种矛盾之时,星系的质量被认为大多集中在星系的核球内,接近星系的核心。但是,观测的螺旋星系自转曲线,都不能证实此一观点。相反的,曲线没有如预期的随距离的平方根减少,而是"平的"-在中心核球外的速度相对于距离几乎是个常数(图一中的实线)。对这一现象的解是在符合最少调整的宇宙的物理定律下,是有为数可观的质量不仅是远离星系的中心,而且在质量对光度的比率上,发光率也很低。这些额外的质量被天文...

历史和问题的描述

在1959年,Louise Volders指出螺旋星系M33的转动没有遵循开普勒定律,到了1970年代,这个结果已扩展至许多其他的螺旋星系。基于这样的模型,在螺旋盘面上的物质(像是恒星和气体)环绕核心旋转的轨道应该与太阳系的行星相似,也就是说,都应该遵循牛顿力学。基于此,可以预期在足够远的距离上环绕星系中心天体的平均轨道速度应该依照质量分布的递减,与轨道距离的平方根成反比(图一中的虚点线)。在发现这种矛盾之时,星系的质量被认为大多集中在星系的核球内,接近星系的核心。

但是,观测的螺旋星系自转曲线,都不能证实此一观点。相反的,曲线没有如预期的随距离的平方根减少,而是"平的"-在中心核球外的速度相对于距离几乎是个常数(图一中的实线)。对这一现象的解是在符合最少调整的宇宙的物理定律下,是有为数可观的质量不仅是远离星系的中心,而且在质量对光度的比率上,发光率也很低。这些额外的质量被天文学家建议归结为在星系晕内的暗物质,早在40多年前弗里茨·兹威基研究星系团时就已经假设这样的物质存在了。如今有大量的观测证据指出冷暗物质的存在,而其存在是宇宙学Lambda-CDM model的主要特色之一。

更进一步的研究

在说服人们相信暗物质的存在曾是很重要的论述,而目前在星系自转曲线的工作中提供了一些巨大的挑战。在1990年代,对低表面亮度星系(LSB)的星系自转曲线和塔利-费舍尔关系的位置进行了详细的研究显示它们没有预期之外的行为。这些星系的行为也是由令人惊奇且时髦的暗物质掌控。无论如何,这种被暗物质掌控的矮星系或许掌握到了结构形成的矮星系问题。

对暗物质理论进一步的挑战,或者至少是它最普遍的形式-冷暗物质(CDM),来自对低表面亮度星系中心的分析。根据CDM的数值模拟,预测被暗物质控制系统的自转曲线,例如这些星系,对实际的自转曲线观测没有显示出如预测的形状。。这是所谓冷暗物质的星系晕尖点问题,是由理论的宇宙学家提出的一个较易处理的问题。

暗物质理论继续支持星系自转曲线的解释,因为暗物质不仅从这些曲线得到证据,它也在大尺度结构形成的模拟中成功的解释星系团中的星系团动力学(一如兹威基最初的提议)。暗物质也正确的预测重力透镜观测的结果。

暗物质的抉择

用于解释星系自转曲线的暗物质,可供抉择的数量是有限的。其中一个被讨论的选择是MOND(被修正过的牛顿动力学),起初是在回溯1983年的现象作逻辑性的解释,但后来发现对LSB的自转曲线预测有强大的能力。重力的物理性质会在大尺度上改变的论断,直到现在依然不是相对论中的理论。可是,这改变了现在张量-向量-标量重力(TeVeS)理论的发展。更成功的选择是Moffat修正的重力理论(MOG),例如标量-张量-向量重力(STVG)。. Brownstein和Moffat(astro-ph/0506370)应用MOG对星系自转曲线加以质疑,并且已经有超过一百个的低表面亮度星系(LSB)、高表面亮度星系(HSB)和矮星系是吻合的样品。

相关条目

薇拉·鲁宾

未解决的物理学问题

Nonsymmetric gravitational theory

暗物质

Long-slit spectroscopy

参考书目

V. Rubin, W. K. Ford, Jr. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophysical Journal. 1970, 159: 379. This was the first detailed study of orbital rotation in galaxies.

V. Rubin, W. K. Ford, Jr, N. Thonnard. Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophysical Journal. 1980, 238: 471. Observations of a set of spiral galaxies gave convincing evidence that orbital velocities of stars in galaxies were unexpectedly high at large distances from the nucleus. This paper was influential in convincing astronomers that most of the matter in the universe is dark, and much of it is clumped about galaxies.

Galactic Dynamics, James Binney and Scott Tremaine。Princeton University Press 1987. ISBN 0-691-08444-0 (cloth); ISBN 0-691-08445-9 (paperback)

J. R. Brownstein and J. W. Moffat.Galaxy Rotation Curves Without Non-Baryonic Dark Matter. Astrophysical Journal. 2006, 636: 721. Arxiv.org Preprint(astro-ph/0506370)

J. R. Brownstein and J. W. Moffat. The Bullet Cluster 1E0567-558 evidence shown Modified Gravity in the absence of Dark Matter. 2007. Arxiv.org Preprint(astro-ph/0702146)


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 自转
数学在三维的空间中,转动以物体绕着转动轴作旋转表示。假若此物体的转动轴是在物体的内部,则此物体绕自己旋转;这就表示其角动量的值会受其相对速度或是此物体是否为不受力的自由运动而决定。数学中的自转转动为保持固定绕一点旋转的刚体运动,不同于移动。这一定义可应用在两维及三维空间(平面和空间上的分别)。三维空间的旋转为保持在固定的一条线作旋转,即三维空间的转动是绕一个轴旋转。此从欧拉旋转定理而来。所有的刚体旋转运动其运动状态可能是转动、移动、或转动加移动所造成。转动简单说为一对于共同点的径向渐进运动,其共同点位于运动转轴上,转轴与运动平面之间夹90度角互相垂直。若转轴位于物体自身外则称为轨道运动,例如:地球相对于太阳的公转。转动和轨道运动或者是自转主要的差异仅为转轴位于物体自身的内或外。而此差异可以在讨论刚体时说明。若此转动为两个围绕相同的点/轴的转动的第三个转动结果,则此逆向转动的结果也是相同。因...
· 地球自转
自转的周期真正周期地球自转的周期是一个恒星日,目前其值为23时56分2.1秒。但是近年来地球自转周期在缓慢增加(即转速缓慢减小),导致需要对全球计时器进行调整,例如2005年12月31日全球钟表统一加一秒。这样的调整称为闰秒。转动速度地球自转的角速度大约是每小时15度;而表面每点的线速度随纬度而变化,是赤道的线速度乘以纬度的余弦。因此赤道的线速度是最大的,两极的线速度最小,而赤道线的速度约465.1m/s。恒星日与太阳日在春分时从太阳看到的地球转轴倾角(或倾角)和它相对于自转轴和轨道平面在像地球的一个顺行平面,恒星日是短于太阳日。在时间点1,太阳和遥远的恒星都在头顶上(在相同的方向上);在时间点2,行星转动360°,遥远的恒星右出现在头顶上,但太阳并不在头顶上(1→2=一恒星日);太阳要稍后,在时间点3,才会抵达头顶上(1→3=一太阳日)。地球相对于太阳的转动一周的时间(从正午至正午)称为...
· 太阳自转
恒星自转太阳在赤道处的自转周期是24.47天,这是所谓的恒星自转周期,不应与26.24天的会合周期相混淆。根据会合周期的定义,太阳需要自转一个恒星周期后再加上地球完成轨道运动的时间,因此会合周期较长。在天文学文献中不常赤道自转周期,而是使用卡灵顿自转周期的定义:一个27.2753天(或25.38天恒星周期)会合自转周期。这个周期相当于太阳在26°纬度时的自转周期,和太阳黑子和其他太阳活动的典型周期相同。当太阳的“北极”(地球视角)逆时针自转时,从地球北半球上看,黑子从左向右穿过太阳表面。使用黑子测量自转自转常数通过测量多种太阳表面特征(示踪物“tracers”)得到。第一种也是应用最广泛的示踪物是太阳黑子。虽然在很早以前人类就观察到了黑子,只有在在使用望远镜观察太阳后,人类才能用黑子运动确定太阳自转周期。根据英国学者托马斯·哈里奥特在其1610年12月8日的笔记中素描,他很可能是第一个用望...
· 自转周期
测量自转对一个固体的天体,像是行星和小行星,自转周期只有一个数值。对气体/流体,像是恒星和气体巨星,自转周期从赤道到极点的周期都不相同,这称为较差自转。通常情况下,气体巨星(木星、土星、天王星和海王星)是内部的自转周期,是测量行星的磁场转动来认定的。对于不对称的非球体天体,即使没有重力或潮汐力的影响,自转周期通常是不固定的。这是因为虽然自转轴在空间中是固定的(依据角动量守恒),但在天体本身却不一定是固定的。正因为如此,天体绕着自转轴的转动惯量可以各不相同,因此转动的速率会改变(角动量是质量、速度与力距的乘积)。土星的卫星Hyperior就表现出这种行为,这样的自转周期被称为混沌。地球地球相对于太阳的自转周期(平太阳日)是平太阳时的86,400秒。这个秒的每一秒都比国际单位制的秒稍微长一点点,因为地球受到潮汐加速的影响,现在的一天比在确定秒长度的19世纪长了一点点。在1750年1892年间的...
· 较差自转
历史据历史记载,伽利略·伽利莱在观测太阳黑子时首度察觉到此一现象,成为第一位观察到较差自转者。而后,克里斯托夫·赛因那(ChristophScheiner)于1630年左右指出太阳在极区与赤道区的自转周期差异,与现今观测结论并无太多差别。成因星体的自转来自于其在前恒星(prestellar)的吸积阶段(accretionphase),以及对角动量的守恒而来。而较差自转的成因主要来自于星体自身结构内部的对流;由于恒星内部有温度梯度等影响,对流会使得内部及外部的物质进行类似置换的动作,而小区块物质本身带有恒星的部分角动量,不同区域的对流造成了恒星内部角速度分布的重新配置,而形成了较差自转的现象。需要注意的是,有时恒星风也是恒星损失角动量的来源。相关条目太阳星云太阳黑子乔凡尼·卡西尼卡灵顿自转太阳自转恒星自转

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信