族谱网 头条 人物百科

傅-克反应

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:5109
转发:0
评论:0
傅-克烷基化反应傅-克烷基化反应在强路易斯酸的催化下使用卤代烃对一个芳环进行烷基化。假设使用无水氯化铁作为催化剂,在氯化铁的作用下,卤代物产生碳正离子,碳正离子进攻苯环并取代环上的氢,最后产生烷基芳香族化合物和氯化氢。总反应式如下:这类反应有个严重缺点:由于烷基侧链的供电性,反应产物比起原料具有更高的亲核性,于是产物苯环上的另一个氢继续被烷基所取代,导致了过烷基化现象而形成了众多副产物。由于这类反应是可逆的,还可能出现烷基被其他基团所取代的副产物(例如被氢取代时,也称为傅-克脱烷基化反应);另外长时间的反应也会导致基团的移位,通常是转移至空间位阻较小、热力学稳定的间位产物。另外如果氯不是处于三级碳原子(叔碳原子)上,还有可能发生碳正离子重排反应,而这取决于碳正离子的稳定性:即三级碳>二级碳>一级碳。空间位阻效应可以被利用于限制烷基化的数量,比如1,4-二甲氧基苯的叔丁基化反应。1,4-二甲...

傅-克烷基化反应

傅-克烷基化反应在强路易斯酸的催化下使用卤代烃对一个芳环进行烷基化。假设使用无水氯化铁作为催化剂,在氯化铁的作用下,卤代物产生碳正离子,碳正离子进攻苯环并取代环上的氢,最后产生烷基芳香族化合物和氯化氢。总反应式如下:

这类反应有个严重缺点:由于烷基侧链的供电性,反应产物比起原料具有更高的亲核性,于是产物苯环上的另一个氢继续被烷基所取代,导致了过烷基化现象而形成了众多副产物。由于这类反应是可逆的,还可能出现烷基被其他基团所取代的副产物(例如被氢取代时,也称为傅-克脱烷基化反应);另外长时间的反应也会导致基团的移位,通常是转移至空间位阻较小、热力学稳定的间位产物。另外如果氯不是处于三级碳原子(叔碳原子)上,还有可能发生碳正离子重排反应,而这取决于碳正离子的稳定性:即三级碳>二级碳>一级碳。 空间位阻效应可以被利用于限制烷基化的数量,比如1,4-二甲氧基苯的叔丁基化反应。

傅-克反应

1,4-二甲氧基苯的叔丁基化

烷基化的底物并不局限于卤代烃类,傅-克烷基化可以使用任何的碳正离子中间体参与反应,如一些烯烃,质子酸,路易斯酸,烯酮,环氧化合物的衍生物。如合成1-氯-2-甲基-2-苯基丙烷就可以从苯与3-氯-2-甲基丙烯进行反应:

傅-克反应

1-氯-2-甲基-2-苯基丙烷的合成

曾有研究实例表明亲电试剂还能选用由烯烃和NBS生成的溴离子。

傅-克反应

通过烯烃的傅-克烷基化

在这个反应中三氟甲磺酸钐被认为在卤离子形成中活化了NBS的供卤素能力。

傅-克去烷基化反应

傅-克烷基化是一个可逆反应。在 逆向傅-克反应或者称之为傅-克去烷基化反应当中烷基可以在质子或者路易斯酸的存在下去除。

例如,在用溴乙烷对苯的多重取代当中,由于烷基是一个活化基团,原来期待能够得到邻对位 取代的产物。然而真正的反应产物是1,3,5-三乙基苯,即所有烷基取代都是间位取代。 热力学反应控制使得该反应产生了热力学上更稳定的间位产物。通过化学平衡,间位产物比起邻对位产物降低了空间位阻。因此反应最终的产物是一系列烷基化与去烷基化共同作用的结果。

傅-克反应

1,3,5-三乙基苯的合成

傅-克酰基化反应

傅-克酰基化反应是在强路易斯酸做催化剂条件下,让酰氯与苯环进行酰化的反应。此反应还可以使用羧酸酐作为酰化试剂,反应条件类似于烷基化反应的条件。酰化反应比起烷基化反应来说具有一定的优势:由于羰基的吸电子效应的影响(钝化基团),反应产物(酮)通常不会像烷基化产物一样继续多重酰化。而且该反应不存在碳正离子重排,这是由于酰基正离子可以共振到氧原子上从而稳定碳离子(不同于烷基化形成的烷基碳正离子,正电荷非常容易重排到取代基较多的碳原子上)。生成的酰基可以用克莱门森还原反应、沃尔夫-凯惜纳-黄鸣龙还原反应或者催化氢化等反应转化为烷基。

傅-克反应

条件:氯化铝为催化剂,回流,无水

傅-克酰化的成功与否取决于酰氯试剂的稳定性。比如甲酰氯就由于不稳定而不能进行,因此合成苯甲醛就需要其他的方法,如Gattermann-Koch反应:在氯化铝和氯化亚铜的催化下,通过苯、一氧化碳与氯化氢在高压当中合成。

反应机理

第一步是在路易斯酸的条件下,氯的解离形成酰基碳正离子:

第二步是接下来的芳环亲电试剂进攻酰基正离子:

最后一步,电荷转移至氯原子形成HCl,而AlCl3催化剂重新形成:

如果需要的话产生的芳香酮可以接着被还原形成相应的芳环烷基侧链,见:沃尔夫-凯惜纳-黄鸣龙还原反应或者Clemmensen还原,两者的区别在于溶剂的酸碱性。

傅-克羟基烷基化

芳环和一定的醛酮形成相应的羟基取代的烷基化产物:

展望与变化

该反应与以下经典的人名反应相关:

酰化产物可以通过Clemmensen还原转化成烷基化产物。

Gattermann-Koch反应可以通过苯来合成苯醛。

Gattermann反应可以通过氢氰酸对芳环进行甲酰化。

Houben-Hoesch反应可以通过氰类化合物来合成芳醛。

Fries重排反应可以通过芳基酯重排得到芳基酮。

Scholl反应可以让两个芳基直接偶联(有些时候被称作 Friedel–Crafts芳香化)。

Zincke–Suhl反应可以让甲基苯酚和四氯化碳反应得到环己烯二酮。

布兰克氯甲基化反应:通过盐酸,氯化锌的催化通过甲醛将氯甲基引入芳基。

Bogert-Cook合成 (1933) 通过脱水反应和异构化,将 1-β-苯乙环己醇 合成菲。

Darzens-Nenitzescu酮合成法(1910, 1936) 将环己烯和乙酰氯反应得到甲基环己基酮。

Nenitzescu还原酰化(1936)

绿色化学当中,氯化铝被石墨代替用于和2-溴丁烷进行对二甲苯的烷基化。因为其碳正离子的稳定性更弱,此类反应不适用于一级卤代烃。

染料

Friedel–Crafts反应应用于很多染料的合成,比如:三苯基甲烷和氧杂蒽染料。 图例通过两当量的百里酚和邻苯二甲酸酐合成百里酚酞(一种pH指示剂)。

图例通过邻苯二甲酸酐和间苯二酚在氯化锌的催化下得到氟代荧光素。而在反应中用N,N-二乙基氨基酚取代间苯二酚做则得到罗丹明B:

Haworth 反应

Haworth反应是合成1-四氢萘酮的一个传统方法。 在这个例子当中苯和琥珀酸酐反应,中间产物被还原,然后继续和羧酸进行FC酰化。 (参见:[1])

另外一个相关反应,从萘作为原料合成菲就是利用琥珀酸酐进行了一系列的反应。

利用傅-克反应进行芳香烃类的检测

利用氯仿和氯化铝催化剂和芳香化合物反应得到三芳香环取代甲烷,由于通常具有亮丽的颜色这种反应能够用来在实验室内检验芳香化合物。

拓展

如同克莱森重排的发展一样,傅-克酰基化反应先是在芳香族化合物的反应中发现和应用,而后来发现该反应同样适用于非芳香族化合物(主要是烯烃)。比如环己烯与乙酰氯在三氯化铝的作用下生成共轭环己烯基酮,而这个方法已经发展为一种重要的合成共轭不饱和酮的方法(Nenitzescu反应)。

傅-克反应

比如在天然产物kelsoene的一种合成方法中就利用了分子内非芳香Friedel–Crafts反应:

傅-克反应

非芳香族化合物中发生的傅克烷基化反应也很常见。最常见的是分子内发生的傅克烷基化反应(但往往冠以其他称呼,比如说阳离子成环反应之类,本质上就是傅-克反应的一种变体。)

参见

亲电取代反应

加特曼-科赫反应

参考资料

在有机合成杂志中的FC(Friedel–Crafts)反应

烷基化:

酰基化:


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱

相关资料

展开
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 傅-克酰基化反应
用途傅-克酰基化反应的出现,主要是为了合成的用途,因为烷基在进行取代反应形成碳阳离子容易进行重排,但是酰化反应中形成的酰阳离子(acyliumion)并不会发生重排现象,因为酰阳离子有个很重要的共振结构,而酰阳离子就会借着共振来稳定,才不会形成碳阳离子重排,因此傅-克酰化反应有个很重要的用途就是避免碳阳离子发生重排,再经由克莱门森还原反应,消除酰基上的氧,而得到烷基,此过程也称傅-克烷基化反应。反应机理参见傅-克反应参考文献NIHThesaurus
· 赫克反应
历史在Fujiwara(1967,藤原祐三)和Heck(1969年)此前对芳烃与烯烃以及芳基卤化汞(ArHgCl)与烯烃在定量钯(II)催化反应的研究的基础上,1971年,日本化学家沟吕木报道了乙酸钾作碱和氯化钯催化下,碘苯与苯乙烯在甲醇中、120°C和加压的条件下偶联为二苯乙烯的反应。1972年,Heck独立报道了碘代苯与苯乙烯的偶联反应,Heck小组采取无溶剂条件,并改用乙酸钯催化和有位阻的三正丁胺作碱。(上述两个反应中的活性催化物种钯(0)都是由钯与烯烃配位而产生。)1974年,Heck向反应引入膦配体。反应机理Heck反应的催化循环是围绕催化的钯中心而展开,如下图所示。循环中所需的活性钯(0)一般是由钯(II)前体在反应中原位产生,例如,乙酸钯可被三苯基膦还原为双(三苯基膦)合钯(0)(1),进入催化循环,同时三苯基膦则被氧化为三苯基氧膦。循环中,首先是电子不饱和的含钯物种(1)与...
· 贝克曼重排反应
反应机理根据推测,贝克曼重排的反应机理首先是烷基的迁移并推走羟基形成腈基基团,接下来该中间体被水解,形成产物酰胺。反应式如下:在一个研究中,研究者使用电脑模拟丙酮肟在贝克曼溶剂中的重排反应,并考虑到了溶剂分子和取代物的影响。模拟表明,有三个乙酸分子和一个质子(以氧鎓的形式存在)参与了反应。形成亚胺中间体后(σ配合物),甲基通过协同反应迁徙到氮上,并推走羟基。羟基中氧原子受到三个乙酸分子的稳定。接下来,一分子水进攻亲电的碳原子,其中一个氢原子被一个乙酸接收,生成的中间体为N-甲基乙酰氨酸,其中氧原子为四配位。最后异构化形成稳定的产物酰胺。当计算对象是一个水合氢离子和六分子水的时候,结果相同。但是当移动基团为苯基的时候,例如在苯乙酮肟的重排反应中,反应更倾向于生成三元π-配合物。此配合物在对H3O(H2O)6的研究中没有发现。在环己酮肟的例子中,因为要释放环张力,所以有了第三种反应机理。它是通...
· 兰堡–巴克伦反应
反应机理砜的另一个α-位(α"-位)被碱去质子化,然后发生分子内亲核取代反应,失去卤离子,形成顺式和反式三元环状砜,最后环状砜失去二氧化硫生成顺式和反式烯烃的混合物。应用1、1,2-二亚甲基环己烷的合成2、α,β-环氧砜经过反应得烯丙醇。参见化学反应列表Favorskii重排反应
· 芬克尔斯坦反应
概要经典的Finkelstein反应是在丙酮中用碘化钠将氯代烃或溴代烃转变为碘代烃的反应。试剂碘化钠可溶于丙酮,但反应生成的氯化钠或溴化钠却是不溶的,会从反应液中沉淀出来,从而促使氯/溴代烃不断地转化为碘代烃。例如,溴乙烷经过反应,可以转化为碘乙烷:亦可用碘化钾、碘化钙、碘化铝代替碘化钠。反应在丙酮或乙醇或水中进行。溴代烃比氯代烃容易发生取代反应。一级卤代烃活性高于二级;二级卤代烃又高于三级。烯丙基、苄基和α-卤代羰基化合物效果也较好。但乙烯基、芳基和三级卤代烃一般不反应。下表给出了一些卤代烃与碘化钠在丙酮中和温度60°C下的反应速率:此反应也用于指将伯醇或仲醇通过与磺酰氯反应形成磺酸酯,再转为卤代烷的反应。磺酸根离子是很好的离去基团,因此磺酸酯比醇更容易进行亲核取代,用这种反应得到的卤代烷纯度很好。例如此反应用于Chrysochlamicacid的制取:卤交换反应卤交换反应(Halexr...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信