族谱网 头条 人物百科

大型强子对撞机

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:638
转发:0
评论:0
设计CERN大型强子对撞机位置图LHC的超导电四极电磁铁,由费米实验室合作者所建造LHC是在一个圆周为27公里的圆形隧道内,该隧道因当地地形的起伏而位于地下约50至175米之间。这是先前大型电子正子对撞机所使用隧道的再利用。隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等等建构于其上。加速器通道中,主要是放置两个质子束管。由于须维持前所未有高能量的粒子运行,加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的二极偏向磁铁及四极聚焦磁铁。两个对撞加速管中的质子,初步将以5TeV的能量对撞,总撞击能量达10TeV之多。(设计目标为14TeV)每个质子环绕整个储存环的时间为89微秒。因为同步...

设计

大型强子对撞机

  CERN大型强子对撞机位置图

大型强子对撞机

  LHC的超导电四极电磁铁,由费米实验室合作者所建造

LHC是在一个圆周为27公里的圆形隧道内,该隧道因当地地形的起伏而位于地下约50至175米之间。这是先前大型电子正子对撞机所使用隧道的再利用。隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等等建构于其上。

加速器通道中,主要是放置两个质子束管。由于须维持前所未有高能量的粒子运行,加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的二极偏向磁铁及四极聚焦磁铁。

两个对撞加速管中的质子,初步将以5TeV的能量对撞,总撞击能量达10 TeV之多。(设计目标为14 TeV)每个质子环绕整个储存环的时间为89微秒。因为同步加速器的特性,加速管中的粒子是以粒子团(bunch)的形式,而非连续的粒子流。整个储存环将会有2808个粒子团,最短碰撞周期为25纳秒。在加速器开始运作的初期,将会以轨道中放入较少的粒子团的方式运作,碰撞周期为75纳秒,再逐步提升到设计目标。

在粒子入射到主加速环之前,会先经过一系列加速设施,逐级提升能量。其中,由两个直线加速器所构成的质子同步加速器(PS)将产生50 MeV的能量,接着质子同步推进器(PSB)提升能量到1.4GeV。而质子同步加速环可达到26 GeV的能量。低能量入射环(LEIR)为一离子储存与冷却的装置。反物质减速器(AD)可以将3.57 GeV的反质子,减速到2 GeV。最后超级质子同步加速器(SPS)可提升质子的能量到450 GeV。

在LHC加速环的四个碰撞点,分别设有五个侦测器在碰撞点的地穴中。其中超环面仪器与紧凑缈子线圈是通用型的粒子侦测器。其他三个侦测器:LHCb(LHC底夸克侦测器),大型离子对撞机实验(ALICE), 以及全截面弹性散射侦测器(TOTEM)则是较小型的特殊目标侦测器。

LHC也可以用来加速对撞重离子,例如铅离子因其荷质比(电荷和质量的比值)可加速到1150 TeV。

由于LHC有着对工程技术上极端的挑战,安全的确保是极其重要的。当LHC开始运作时,磁铁中的总能量高达100亿焦耳,而粒子束中的总能量也高达725Megajoule(MJ)。只需要10总粒子能量便可以使超导磁铁脱离超导态,而丢弃全部加速器中的粒子可相当于一个小型的爆炸。

于2010年3月20日首度成功进行了粒子撞击实验,并创造了高达7TeV的庞大能量。

研究主题

大型强子对撞机

  一张描述LHC如何产生希格斯玻色子的费曼图。在图中,两个夸克各放射出一个W及Z玻色子,进而融合成一个希格斯玻色子。

大型强子对撞机

  在CMS侦测器中希格斯玻色子衰变的模拟事例重建图。(event display)

物理学家希望借由加速器对撞机来帮助他们解答下列的问题:

标准模型中所流行的造成基本粒子质量的希格斯机制是真实的吗?真是如此的话,希格斯粒子有多少种,质量又分别是多少呢?

为何万有引力相对于其他作用力是如此地微弱?当重子的质量被更精确的测量时,标准模型是否仍然成立?

自然界中粒子是否有相对应的超对称粒子存在着?详见阶层问题(英语:Hierarchy problem)。

为何“物质”与“反物质”是不对称的?详见CP破坏。

有更高维度的空间(卡鲁扎-克莱因理论)存在吗?我们可以见到这启发弦论的现象吗?

宇宙有96%的质能是目前天文学上无法观测到的暗物质与暗能量,这些的组成到底是什么?

为何重力比起其他三个基本作用力(电磁力,强作用力,弱作用力)差了这么多个数量级?

在标准模型中有存在于预言之外的其他色夸克存在吗?

在早期宇宙以及如今某些紧密而奇怪物体中存在的夸克-胶子等离子体的性质和属性是怎样的?这个问题会在大型粒子对撞机——ALICE中研究

重离子对撞机

虽然LHC的物理实验计划,着重于研究质子对撞后的现象。然而,如每年一个月的短期重离子对撞也在实验计划之中。虽然其他较轻的离子对撞实验也是可行的,目前主要的规划为铅离子的对撞实验。

LHC升级计划

有提议在十年内LHC需要提升一次硬件性能。 认为LHC需要作基本上硬件的修改以提升它的“亮度”(单位截面碰撞发生的频率)。理想中LHC升级的途径将是包含增加粒子束的流量,以及修改两个需要高亮度的区域:ATLAS与CMS这两个侦测器来配合。下一代超大型强子对撞机的入射能量需增加到1 TeV,因此前置入射装置也需升级,特别是“超级质子同步加速器”的部分。

经费支出

LHC的建造经费最初是1995年通过的一笔26亿瑞朗,另有一笔两亿一千万元瑞朗的经费作为实验之用。然而,经费超支。在2001年的一次主要审核预期,将需增加四亿八千万元瑞朗在加速器的建造,与五千万元瑞朗的支出在实验运作上。同时,由于CERN年度预算的缩减,LHC的完工日期由2005年延后到2007年四月,以使用更多年度预算来支付。 其中增加的一亿八千万元瑞朗,用于超导磁铁的制造。另外,尚有在兴建放置CMS的地下洞穴时遇到的工程技术上的困难。 预期的建造总额约为八十亿美元。

LHC@Home

LHC@home是一个分散式计算的计划,用来支持LHC兴建与校正之用。这个计划是使用BOINC平台,来模拟粒子如何在加速器隧道中运行。有了这项资讯,科学家便可以决定如何放置磁铁与调整功率,来达到加速轨道运行的稳定。

安全顾虑

CERN进行了一些研究调查,检视是否有可能产生例如微黑洞、微小的奇异物质(奇异微子)或是磁单极等危险的事件。这份报告认为“我们找不到任何可以证实的危害”。例如,除非某个未经证实的理论是对的,否则是不可能产生出微小黑洞的。即使真有微黑洞产生了,预期会透过霍金辐射的机制,很快就会蒸发消失,所以会是无害的。而像LHC这样高能量的加速器的安全性,最有力的论点在于一个简单的事实:宇宙射线的能量比起LHC来要高出非常多数量级,太阳系星体从形成到现在这么多年下来,都不断地被宇宙射线轰击。既没有产生出微黑洞、微小的奇异物质或是磁单极,太阳、地球和月球也都没有因此被摧毁。

建设意外与延迟

大型强子对撞机

  LHC的紧凑缈子线圈(CMS)侦测器

2005年10月25日,因为起重机载货的意外掉落,造成一位技术人员的丧生。

2007年3月27日,由费米实验室所负责建造,一个用于LHC内部的三极低温超导磁铁(属于聚焦用四极磁铁),因为支撑架的设计不良,在压力测试时发生破损。虽然没有造成人员的伤亡,但是却严重影响了LHC开始运作的时程。费米实验室主任皮耶·奥登(Pier Oddone)说道:“在这个案例中,我们惊讶地发现到,一个简单的静力平衡被疏忽了。”这个错误存在原始的设计中,而且经过多年来数次的审核都没有发现。分析发现,为了缩小支撑架的粗细来达成束流管更佳的绝缘效果,却因此不足以支撑压力测试时,所施加的外力。详细的内容可见于费米实验室的对外说明,CERN也同意其内容。修复损坏的磁铁,并且补强八个同型的磁铁造成了LHC预计开始运行的时程,因此延迟到2007年11月。

2008年9月19日,LHC第三与第四段之间,冷却超导磁铁用的液态氦发生了严重的泄漏,占总量约1/3的高达6吨液态氦泄漏到隧道中。目前据推测是由于费米实验室负责建造的超导体磁铁,在联接两个的连接总线(bus bar)焊接不良,在超导高电流的情况下产生了热量使得超导体脱离超导态,电流经过瞬间的高电阻形成了电弧打穿了冷却设备的液态氦储存槽所造成的。依据CERN的安全条例,必需将磁铁升回到室温后详细检查才能继续运转,这将需要三到四周的时间。要再冷却回运作温度,也是得经过三四周的时间,如此即使直接替换掉损坏的元件不进行补强作业,也还是正好遇上预定的年度岁修时程,因此要开始运作将至少可能延迟至2009年春天。

2008年10月16日,CERN发布了关于液态氦泄漏事件的调查分析,证实了先前推测的为两超导磁铁间焊接点不良所造成的。由于安全条例确实地实行、安全设计皆有正常工作、并且替换用的零件都有库存,依目前CERN于2008年12月5日公布的时程,LHC将于2009年夏天开始恢复运转。

根据2009年4月30日CERN的最新公报,LHC最后的一段维修偏向磁铁完成放置回隧道当中,自2008年9月19日泄漏事件以来毁损的磁铁维修作业终于告一段落。接下来的工作,将专注于完成磁铁间的连结工作以及预防未来类似泄漏事件的加强监控与补强作业。在此次的维修作业中,LHC第三第四段间共有53个磁铁被替换掉。其中有16个损伤不大的磁铁,是以良品维修(refurbish)的方式来处理,而另外37个损坏较严重的部分,则是直接由备品替换。这些替换下来的磁铁,将在维修之后作为将来的备品料件使用。目前LHC管理部门所规划的时程,仍依照2009年2月9日CERN所公布的,将于九月底启动运转,并预计十月开始对撞实验。

发现

2012年7月4日,欧洲核子研究组织宣布紧凑缈子线圈发现质量为125.3±0.6GeV的新玻色子,标准差为4.9;超环面仪器发现质量为126.5GeV的新玻色子标准差为4.6。物理学者认为这两个粒子可能就是希子。欧洲核子研究组织的所长说:“从一个外行人的角度来说,我们已经发现希子了;但从一个内行人的角度来说,我们还需要更多的数据。”

一旦将其它种类的紧凑缈子线圈相互作用纳入计算,这两个实验达到局部统计显著性5个标准差──错误概率低于百万分之一。在新闻发布之前很长一段时间,两个团队彼此之间不能互通讯息,这样才能确保每一个团队得到的结果不会受到另一个团队的影响而发生任何偏差,这也可以让两个团队各自独立得到的研究结果可以彼此相互核对。

如此规格的证据,通过两个被隔离团队与实验的独立确定,已达到确定发现所需要的正式标准。欧洲核子研究组织的治学态度非常严谨,不愿意引人非议;欧洲核子研究组织表明,新发现的粒子与希子相符,但是物理学者尚未明确地认定这粒子就是希子,仍旧需要更进一步搜集与分析数据才能够做定论。 换句话说,从实验观测显示,新发现的玻色子可能是希格斯玻色子,很多物理学者都认为非常可能是希格斯玻色子,现在已经证实有一个新粒子存在,但仍旧需要更进一步研究这粒子,必需排除这粒子或许不是希格斯玻色子的任何可疑之处。7月31日,欧洲核子研究组织的紧凑缈子线圈小组和超环面仪器小组分别提交了新的侦测结果的论文,将这种疑似希子的粒子的质量确定为紧凑缈子线圈的125.3 GeV(统计误差:±0.4、系统误差:±0.5、统计显著性:5.8个标准差)和超环面仪器的126.0 GeV(统计误差:±0.4、系统误差:±0.4、统计显著性:5.9个标准差)。

2013年3月14日,欧洲核子研究组织发布新闻稿表示先前探测到的新粒子是希格斯玻色子。

2014年11月9日,欧洲核子研究组织宣布发现2种次原子粒子Xi_b"-和Xi_b*-,都属于重子(baryon)粒子家族。这两种粒子包括1个底夸克、1个奇夸克和1个下夸克。

参见

探寻希格斯玻色子时间轴

费米加速器实验室

高能加速器研究机构

国际直线加速器(International Linear Collider)

LHC@home

超导超大型加速器

 


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 强子
词源学在1962年国际高能物理大会的全体会议里,列夫‧奥肯发表演讲提议创建术语“hadron”,性质每一种强子的总色荷为零。例如,一个介子的绿色与品红色(反绿色)箭矢相互抵销成为白色;一个重子的红色、绿色、蓝色箭矢相互抵销成为白色;一个反重子的黄色(反蓝色)、品红色(反绿色)、青色(反红色)箭矢相互抵销成为白色。根据夸克模型,强子的性质主要是决定于其价夸克,例如,质子是由两个上夸克与一个下夸克所组成;上夸克的电荷为+⁄3,下夸克的电荷为−⁄3,所以,质子的电荷为+1。每一个夸克都带有色荷,这色荷可以为红色,绿色或蓝色,而强子的色荷必需为零,即强子的颜色必需为“无色”或“白色”,这是因为一种称为夸克禁闭的物理现象。最简单达成这目标的方法有两种:组成重子的三个夸克必须带有不同的色荷。组成介子的一个夸克与一个反夸克必须带有相反的颜色,例如,假若夸克带有红色,则反夸克必须带有反红色。更进一步分析,...
· 奇异强子
参见重子介子
· 强子时期
参考资料Allday,Jonathan.Quarks,LeptonsandtheBigBang.SecondEdition.2002.ISBN978-0750308069.Physics175:StarsandGalazies-TheBigBang,MatterandEnergy;IthacaCollege,NewYork
· 大型雁
品种简介:雁,鸟纲鸭科,雁亚科各种类之通称,主食植物嫩叶、细根和种子,经济价值颇高。雁类具有很高的药用价值,据《日华本草》等十多部药典介绍,雁肉、雁肪均有祛风寒,壮筋骨、益阳气、活血之功效。另外,雁之羽绒可用来制做羽扇、粘画,雁绒更是填充衣被当之无愧的优质材料。目前,专家们认为,在人工驯养条件下,全部使用人工孵化、人工育雏,其繁殖率可望达到自然状态的3-5倍。经试验,雁类野禽驯化成活率能达到95%以上,长途运输成活率接近100%,并且人工养殖不受环境限制。另外,采用人工授精技术能减少数十倍的种公雁饲养量,既可降低成本,减少疾病,提高雁群质量,又可探讨雁品种间、雁和家鹅之间的种间杂交,以提高雁的繁殖力和家鹅的抗病力与食草性能。
· 变法图强——没奶的孩子
?对于赵家的继承人问题,张孟谈比赵鞅想得还要早。张孟谈早已经为赵鞅的儿子们甚至侄子们都做了档案,一一进行比照。最后,他得到了一个惊人的结论:只有一个人可以救赵家,而这个人不在赵鞅心目中的候选人名单中。可是,张孟谈知道,不管自己如何被赵鞅信任,也不管赵鞅是如何宽厚,有一点是绝对不方便自己说的,那就是赵家的继承人问题。因为,这是家事,赵家的家事,过问君主的家事会被怀疑有野心。所以,即便张孟谈有想法,也绝对不会主动提出来。在这一点上,张孟谈的谨慎是正确的。后世无数的事实证明了这种谨慎的道理,两个典型的例子可以佐证。三国时期,曹操在立太子的问题上举棋不定,去问贾诩,结果被誉为三国时期最睿智的贾诩并不正面回答,而是假装思考,之后曹操问他在想什么,他说他在想袁绍和刘表父子。曹操哈哈一笑,确定立曹丕。这就是贾诩的聪明之处,没有正面回答,却把意思表达了。一个反面的例子则是岳飞,文武双全忠勇善战并且救过宋高...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信