族谱网 头条 人物百科

RNA干扰

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:1403
转发:0
评论:0
发现在转基因的矮牵牛花中所观察到的RNA干扰现象RNA干扰现象是1990年由约根森(Jorgensen)研究小组在研究查尔酮合成酶对花青素合成速度的影响时所发现,为得到颜色更深的矮牵牛花而过量表达查尔酮合成酶,结果意外得到了白色和白紫杂色的矮牵牛花,并且过量表达查尔酮合成酶的矮牵牛花中查尔酮合成酶的浓度比正常矮牵牛花中的浓度低50倍。约根森推测外源转入的编码查尔酮合成酶的基因同时抑制了花中内源查尔酮合成酶基因的表达。1992年,罗马诺(Romano)和Macino也在粗糙链孢霉中发现了外源导入基因可以抑制具有同源序列的内源基因的表达。1995年,Guo和Kemphues在线虫中也发现了RNA干扰现象。1998年,安德鲁·法厄(AndrewZ.Fire)等在秀丽隐杆线虫(C.elegans)中进行反义RNA抑制实验时发现,作为对照加入的双链RNA相比正义或反义RNA显示出了更强的抑制效果。从...

发现

RNA干扰

在转基因的矮牵牛花中所观察到的RNA干扰现象

RNA干扰现象是1990年由约根森(Jorgensen)研究小组在研究查尔酮合成酶对花青素合成速度的影响时所发现,为得到颜色更深的矮牵牛花而过量表达查尔酮合成酶,结果意外得到了白色和白紫杂色的矮牵牛花,并且过量表达查尔酮合成酶的矮牵牛花中查尔酮合成酶的浓度比正常矮牵牛花中的浓度低50倍。约根森推测外源转入的编码查尔酮合成酶的基因同时抑制了花中内源查尔酮合成酶基因的表达 。

1992年,罗马诺(Romano)和Macino也在粗糙链孢霉中发现了外源导入基因可以抑制具有同源序列的内源基因的表达 。1995年,Guo和Kemphues在线虫中也发现了RNA干扰现象 。

1998年,安德鲁·法厄(Andrew Z. Fire)等在秀丽隐杆线虫(C.elegans)中进行反义RNA抑制实验时发现,作为对照加入的双链RNA相比正义或反义RNA显示出了更强的抑制效果 。从与靶mRNA的分子量比考虑,加入的双链RNA的抑制效果要强于理论上1:1配对时的抑制效果,因此推测在双链RNA引导的抑制过程中存在某种扩增效应并且有某种酶活性参与其中。并且将这种现象命名为RNA干扰。

2006年,安德鲁·法厄与克雷格·梅洛(Craig C. Mello)由于在RNAi机制研究中的贡献获得诺贝尔生理及医学奖。

机制

siRNA

RNA干扰

RNA干扰现象的机理

RNA干扰作用是通过一类较稳定的中间介质实现的。对植物的研究证明,双链RNA复合体先降解成为35nt左右的小RNA分子,然后他们通过序列互补与mRNA结合,从而导致mRNA降解 。对果蝇的研究证明,长度为21~23nt的小RNA分子是引起RNA干扰现象的直接原因 。这种小RNA分子被称之为小干扰RNA(small interfering RNA,siRNA)。

在RNA干扰中一个非常重要的酶是RNaseIII核酶家族的Dicer。它可与双链RNA结合,并将其剪切成21~23nt及3"端突出的小分子RNA片段,即siRNA。随后siRNA与若干个蛋白组成的,RNA引起的称之为RNA诱导沉默复合体(RNA-induced silencing complex,简称RISC)结合,解旋成单链,并由该复合体主导RNAi效应 。RISC被活化后,活化型RISC受已成单链的siRNA引导(guide strand),序列特异性地结合在标靶mRNA上并切断标靶mRNA,引发靶mRNA的特异性分解。

迄今为止已鉴定出包括Dicer在内的若干个与RNAi有关的蛋白因子。在果蝇(Drosophila melanogaster)RISC中,已知存在着称为Argonaute2(AGO2)的因子,AGO2蛋白的表达受到抑制时,RNAi效应缺失,也就是说AGO2是果蝇RNAi机制的必须因子。研究表明Argonaute家族蛋白具有RNA切割酶活性(slicer activity),RNAi机制正是由Argonaute家族蛋白的RNA切割酶活性主导。另外,几个RNA解旋酶(RNA helicase)也被鉴定为参与RNAi机制的因子。在秀丽隐杆线虫(C. elegans)的RNAi中必须的因子有EGO1,这是一种RdRP(RNA-dependent RNA Polymerase),植物中也存在该蛋白同系物。RNAi中RdRP是将标靶mRNA作为模板,以导入的dsRNA(或siRNA)作为引物合成RNA,在细胞内针对于标靶mRNA合成新siRNA的酶。这一反应在一些生物的RNAi中为必须,但RdRP活性在人和果蝇的RNAi中是非必须的,这说明在不同物种之间RNAi机制的基本框架虽然相同,但存在着微妙差异。

microRNA

在真核生物当中,还存在另外一种小分子RNA(microRNA)也能引起RNA干扰现象。microRNA大多20-22nt长,前体具有类似发夹性的茎环结构。microRNA产生于该茎环结构的双链区。其特点与siRNA基本上相同 。

RNA干扰的作用

2001年,Tuschl等将siRNA导入到哺乳动物细胞中并由此解决了在哺乳细胞内导入长的双链RNA时引发的干扰素效应,由此拓展了RNAi在基因治疗上应用前景。RNAi机制普遍存在于动植物,尤其是低等生物中 。因此被认为是进化上相对保守的基因表达调控机制。一种假说为 ,RNAi机制是作为在RNA水平上抵御病毒入侵的防御机制而存在的。在病毒自身基因组所包含的,或在病毒复制过程中产生的双链RNA可以被Dicer识别,从而引起病毒RNA降解。但是许多病毒为抵抗宿主的RNA干扰机制,会产生抑制宿主RNA干扰的蛋白,以保护病毒基因在宿主体内的顺利复制。已经发现的可以抑制宿主RNA干扰的病毒蛋白有potyviruses编码的HC-PRO蛋白、马铃薯X病毒编码的Cmv2b蛋白、兽棚病毒编码的B2蛋白等 。

RNA干扰也是抑制破坏基因结构的一种DNA片段转录子活性的重要方式。转录子通常以逆转录的方式在基因组中扩增。在逆转录过程中产生的双链RNA分子可以被Dicer识别,从而被降解 。

目前发现,RNAi机制中的相关一些因子如内源性双链RNA及蛋白因子可以在多种层次上对基因表达进行调控,其范围已经超越了PTGS(post transcriptional gene silencing),如RNAi机制同样参与了转录水平上的基因表达调控过程中。

应用

RNAi在 基因沉默 ( 英语 : silent gene ) (silent gene)方面具有高效性和简单性,所以是基因功能研究的重要工具。

大多数药物属于标靶基因(或疾病基因)的抑制剂,因此RNAi模拟了药物的作用,这功能丢失(LOF)的研究方法比传统的功能获得(GOF)方法更具优势。因此, RNAi在今天的制药产业中是药物靶标确认的一个重要工具。同时,那些在靶标实验中证明有效的siRNA/shRNA本身还可以被进一步开发成为RNAi药物。

在药物标靶发现和确认方面,RNAi技术已获得了广泛的应用。生物技术公司或制药公司通常利用建立好的RNAi文库来引入细胞,然后通过观察细胞的表型变化来发现具有功能的基因。如可通过RNAi文库介导的肿瘤细胞生长来发现能抑制肿瘤的基因。一旦所发现的基因属于可用药的靶标(如表达的蛋白在细胞膜上或被分泌出细胞外),就可以针对此靶标进行大规模的药物筛选。此外,被发现的靶标还可用RNAi技术在细胞水平或动物体内进一步确认。

在疾病治疗方面,双链小分子RNA或siRNA已被用于临床测试用于几种疾病治疗,如老年视黄斑退化、肌肉萎缩性侧索硬化症、类风湿性关节炎、肥胖症等。在抗病毒治疗方面,帕金森病等神经系统疾病已经开始初步采用RNA干扰疗法。肿瘤治疗方面也已经取得了一些成果 。

参考文献

来源

Recent develpment of RNAi in drug target discovery and validation, Drug Disvoery Today: Technologies .(2006)3:293-300.

Development of new RNAi therapeutics, Histology and Histopathology . (2007)22:211-217.

《新药药物靶标开发技术》,2006年版,高等教育出版社,ISBN 7-04-018953-4

参见

小干扰RNA(siRNA)

小发夹RNA(shRNA)


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· RNA测序
介绍相较于一个静态的染色体而言,细胞内的转录物组是一个处于不断变化的动态过程。随着现在的下一代基因测序(NGS)技术的发展,使得可测得的DNA碱基覆盖面增加且样本输出的吞吐量增大。有助于对细胞内RNA转录物进行测序,提供包括选择性剪接的转录、转录后的改变、基因融合、突变/SNPs以及基因表达量改变等细节。,RNA测序不仅能检测mRNA的转录,还能观测到包括包括总RNA和小RNA(miRNA、tRNA和核糖体RNA)在内不同尺度的RNA表达谱。RNA测序还能用来确定外显子/内含子的边界,修正之前注释的5"和3"端基因边界。未来的RNA测序研究还包括观察感染时细胞传导路径的变化和癌症中不同基因表达程度。下一代基因测序之前,对转录物组学和基因表达的研究主要基于基因表达芯片(微阵列),后者包含数以千计用于探测靶向序列的DNA探针,可以得到所有表达出转录物的表达谱。基因表达芯片之后,基因表达的系列分
· 干扰素
性质1954年,日本传染病研究所的长野泰一、小岛保彦发表了“病毒干扰素发现”的报告。1957年,英国科学家Isaacs和Lindenmann亦发现了干扰素,并将之命名为“Interferon”。所谓病毒干扰现象就是一种病毒感染某个细胞后能够干扰随后的其它病毒对该细胞的感染。最初,科学家们把消灭活性的流感病毒接种于鸡胚细胞内,结果发现这些细胞可以分泌一种可溶性物质来抑制和干扰流感病毒的复制,所以将这种物质命名为干扰素。通常细胞只在受到低病毒力的病毒感染之后才能大量合成干扰素,而高病毒力的感染会使得细胞在合成干扰素之前就已致死。另外一个可以诱导细胞合成干扰素的因素是双链RNA的存在。因为双链RNA在正常的细胞中不存在,而只存在于RNA病毒或是受RNA病毒感染的细胞中。因此无论是天然还是合成的双链RNA可以作为一个病毒感染信号来诱导细胞合成干扰素。干扰素和邻近且未感染的细胞结合后会形成一种由核苷...
· RNA剪接
剪接途径RNA剪接可以有多种的方式。剪接的型式以内含子的结构及剪接所需的剪接因子而定。此外,RNA剪接还分为分子内(intramolecular)剪接(cissplicing)以及分子间(intermolecular)剪接(transsplicing)。但不论哪一种途径,移除的内含子都会被抛弃。剪接体内含子经常存在于真核生物的蛋白质编码基因(codinggene)中。在内含子里,需要有5"剪接位点(5"splicesite)、3"剪接位点(3"splicesite)及剪接分枝位点(branchpoint)来进行剪接。剪接是由剪接体(Spliceosome)来催化,它是以五个不同的小核核糖核酸(snRNs)以及不下于一百个蛋白质所组成的大型核糖核酸蛋白质复合物,称为小核核糖蛋白(snRNP)。snRNP的RNA会与内含子行杂交反应(hybridization),并且参与剪接的催化反应。自剪接
· RNA聚合酶
控制转录人类RNA聚合酶I、Ⅱ及Ⅲ的必要亚基控制转录过程会影响基因表达的模式,并从而容许细胞适应不同的环境、执行生物内独特的角色及维持生存所需的代谢过程。所以,RNA聚合酶是活动不单是复杂,而且是有高度规律的。在大肠杆菌中,已确认超过100个因子可以修饰RNA聚合酶的活动。RNA聚合酶可以在特定的DNA序列,称为启动子发动转录。它继而产生RNA链以补足DNA的模板股。并会加入核苷酸至RNA股,这个过程称为“延伸”。在真核生物的RNA聚合酶可以建立一条长达240万个核苷的链(等同于肌萎缩蛋白基因的总长度)。RNA聚合酶会优先在基因末端已编码的DNA序列(称为终结子)释放它的RNA转录本。核糖体会把一些RNA分子会作为蛋白质生物合成的模板。其他会折叠成核酶或转运RNA(tRNA)分子。第三种可能性是RNA分子会单纯地用作控制调节将来的基因表达。(参考小干扰性RNA)RNA聚合酶完成一个全新的合...
· 无线电干扰
背景干扰源产生的原因是历史积攒造成的。早在经济改革的初期,无线电管理政策从军管转到地方政府管理,使用的逐步开放使之走向民用化,各种管理法规随之一一建立,随着经济体制从计划经济向市场经济改革的不断深化,无线电事业和其他事业一样得到迅速的发展,人们的思想观念发生巨大变化,原有的法规不能满足管理的要求,在经济利益驱使下,造成一些单位、个人擅自使用无线电台,特别是个人使用大功率无绳电话和广播电视机构擅自扩大发射机输出功率所形成的干扰事件频频发生,在无线电管理上形成了年年管又年年增多的现象,既繁重又无奈的状态。原理无线电干扰信号主要是通过直接耦合或者间接耦合方式进入接收设备信道或者系统的电磁能量,它可以对无线电通信所需接收信号的接收产生影响,导致性能下降,质量恶化,信息误差或者丢失,甚至阻断了通信的进行。因此,通常说,无用的无线电信号引起有用无线电信号接收质量下降或者损害的事实,被称为无线电干扰。分...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信