航天飞机固体助推器
概览
两台可重用的SRB提供航天飞机离地时的主要推力,一直工作到约45公里(150000英尺)高空。在发射台上,SRB承担了外储箱和轨道器的全部重量,并将之转移给移动发射台。发射时每台助推器产生约1245吨(2800000磅力)推力,随后迅速增加到1379吨(3100000磅力)推力。三台主发动机点火推力达到预设水平后,SRB点火。SRB分离75秒后到达67公里(220000英尺)最高点,随后降落伞打开,溅落在离发射场122海里(226公里)海面上并得到回收。
SRB是最大的固体燃料火箭,也是第一次采用可重用设计的固体火箭。助推器高45米,直径3.7米。在发射台上,每台助推器重589550 kg(1300000磅),两台助推器占全部起飞质量的60%。而每台助推器中填充的推进剂重约498850 kg(1100000磅)。
SRB的基本元件有发动机(含壳体,推进剂,点火器和喷管),主结构体,分离系统,飞行控制仪器,火工设备,减速系统,推力矢量控制器,回收系统,安全自毁系统。
每台助推器都通过SRB尾部的两个横向支杆和斜向连接杆与外储箱相接,并且SRB前裙部与外储箱前端相接。每台助推器尾部还通过四颗脆性螺母与发射台相接,起飞时螺母断开。
助推器分为七部分有不同厂商制造然后在厂房中成对组装,通过铁路运到肯尼迪航天中心完成最后总装。各段通过环形夹,挂钩, 牵引钩联结销紧固,再用三个“O形环”进行密封,最后涂上耐热腻子。
组件
SRB结构
固定柱
每台助推器都有四个固定柱与发射台上的相应的支撑柱对应,固定螺栓将助推器与发射台连接起来。螺栓两端都有螺母,而顶端螺母是脆性螺母,其中含有两个NASA标准起爆器(NSD),将在固体发动机收到点火命令后起爆。随后螺栓在NSD燃气压力和重力作用下向下滑出掉入装满沙的螺栓减速台。该螺栓长71厘米,直径8.9厘米。而脆性螺母被吹风容器捕获。如果固定失败,SRB的推力足够拉断螺栓,释放航天飞机。
SRB的点火命令是轨道器中的电脑发出的,信号经主事件控制器到移动发射台上的火工点火控制器(PIC)。发射前16秒,发射处理系统为PIC低压供电,PIC使用低压启动起爆器。
电力分配
轨道器的主直流总线电源通过A、B、C三条SRB总线向SRB供电,分别对应主直流总线电源的A,B,C线。主直流总线电源的C线作为SRB的A、B总线的备用电源,B线作为SRB的C总线备用电源。如此电力分配设计可使所有SRB总线在轨道器其中一个总线失效时保持电力。
公称运行电压是28±4VDC.
液压系统
每台SRB都含有两套自维持的独立液压动力系统(HPU),每个系统由辅助动力系统(APU),燃料供给模块,液压泵,液压储油器和液压液体管道集成组成。辅助动力系统由联氨供能,通过机械轴驱动液压泵,产生SRB液压系统的液压。两套液压动力系统和两套液压系统处于SRB尾部,位于喷管和尾裙部之间。液压动力系统的组件安置在尾裙部,处于摇摆和倾斜传动装置之间。而控制电路模块置于尾部外储箱连接环处的电子集成设备区。两套系统在T+28秒开始工作 ,直至SRB与外储箱和轨道器分离。
液压动力系统和其燃料系统是彼此分开的。每个燃料供给模块储有10kg联氨,压力为2757.88 kPa(400psi)的氮气挤压联氨进入燃料分配管。
辅助动力系统(APU)中,燃料泵给联氨增压并输送至燃气发生器。燃气发生器在催化剂作用下将联氨分解为高温,高压气体。二级涡轮泵将气压变为机械动力,驱动变速箱。冷却的低压废气在排出前还流经燃气发生器做冷却之用。变速箱驱动燃料泵,自身润滑泵,液压动力系统的液压泵。该系统不能自启动,因此一根旁管向燃气发生器输送氮气,直到辅助动力系统转速过高,产生的出口压力高过旁管。
APU转速达到100%,APU主控制阀关闭,此后APU的转速由控制电路控制。如果主控制阀出故障保持开放状态,副控制阀将在APU达到112%转速时起作用。APU的全速转速为72,000 rpm,110%转速为79,200 rpm,112%转速为80,640 rpm。
SRB上的液压动力系统与SRB的伺服传动机构相连,一套系统为伺服传动机构提供主动力,第二套作为副动力源。若主液压系统压力降至14100kPa,传动机构由切换阀控制开启副动力源。切换阀处于第二位置时,一个开关触头将关闭。若阀门关闭,APU控制器将收到信号,将APU设定为112%工作状态。APU的全速工作能为一套APU/HPU提供足够液压。
液压泵转速为3,600 rpm,输出液压为21000±340kPa。高压放泄阀当液压超过25855kPa时打开,以保护液压系统。
APU/HPU及液压系统可重用20次。
推力矢量控制系统
每台SRB有两套液压万向伺服传动机:一套用于翻滚,一套用于倾斜。伺服传动机为喷管的推力矢量控制提供动力。
航天飞机飞行控制系统中的上升推力矢量控制部分(ATVC)负责引导三台主发动机和两台SRB的推力以在发射和上升段控制飞行高度和轨迹。来自制导系统的指令送到ATVC,ATVC按一定比例分给主发动机和SRB的伺服传动机。四个独立的飞行控制系统通道和四个ATVC通道控制六个主发动机驱动器和四个SRB的ATVC驱动器,一个驱动器负责一台伺服传动机。
每个SRB伺服传动机由四个独立的二级伺服阀组成,伺服阀接受来自驱动器的信号。一个伺服阀控制一个传动机,进而控制喷管朝向,确定推力方向。传动机动力缸中传感器为推力矢量系统提供定位反馈信息。
每套传动机的四个伺服阀还提供一套控制定位的“多数表决机制”,即四个伺服阀的信号一致才启动,如果一个错误信号持续超过预定时间,压差传感器激活选择阀以隔离故障伺服阀的液压。由其余的伺服阀控制传动机运动。
每个信号通道的故障监视器可以显示哪个通道出问题,而隔离阀可以复位出故障的通道。
每套伺服传动机还有溅落减载设备,使喷管的挠性轴承的溅落至海面时免受损伤。
速率陀螺仪配件
每台SRB有两个速率陀螺仪集成(RGA),每个RGA含有一个倾斜和一个偏航陀螺仪。它们与轨道器的翻转陀螺仪一同为轨道器电脑,制导导航系统和控制系统提供数据。SRB分离后,轨道器的陀螺仪集成继续工作。
陀螺仪集成信号通过尾部多路/多路分配器传到轨道器通用控制系统。陀螺仪集成数据冗余系统采用中值选择方式。陀螺仪集成可重用20次。
推进剂
发动机推进剂由高氯酸铵(氧化剂,占69.6% 质量),铝(燃料,16%),铁氧化物(催化剂,0.4%),聚合物(如PBAN和HTPB,作粘合剂,次级燃料,12.04%),环氧树脂(固化剂,1.96%)组成。这种推进剂亦称高氯酸铵组合推进剂(APCP)。用这种推进剂海平面比冲为242秒,真空比冲268秒。
主燃料是铝,因为铝比能为31.0MJ/kg,但是体积应变能密度也很高,难以意外引燃。
推进剂在前发动机段中是十一星形填料,在尾部和后罩部呈双截锥形。如此填装使发动机在离地时产生大推力,并在约50秒后推力渐减以避免航天飞机在最大动压(Max Q)期间过载。
工作过程
SRB海平面推力,数据来自STS-107
点火
SRB只有在安全发火机构的锁针被移除后点火器才能工作,锁针由地面工作人员在预发射期间手工移除。助推器发动机点火指令在三台主发动机点火并达到额定推力90%时发出,而且没有主发动机故障,SRB点火器火工启动控制器(PIC)电压过低,发射处理系统(LPS)没有延迟。
轨道器电脑通过主事件控制器(MEC)向SRB上的安全发火机构,NASA标准起爆器发出点火指令。火工启动控制器的一个单通道电容放电器控制各个火工设备的点火。火工启动控制器必须同时收到三个信号才能点火,三个信号是:预备,点火1和点火2,它们源自轨道器通用计算机 (GPC),随后送到MEC,MEC用28伏电压将信号送到PIC。arm信号将PIC电容充电到40伏 DC。
通用计算机的发射序列也控制一部分主推进系统阀门,并监视主发动机的就绪状态。机载计算机在T-6.6秒向主推进系统发出启动指令(次第启动三台主发动机,间隔0.25秒),随后监视每台发动机的推力变化,三台主发动机必须在三秒内达到90%推力,否则会发出程序关机指令,并触发安全措施。
正常情况下(推力达到90%)在T+3秒时,主发动机接到指令调整到喷管到起飞朝向,同时SRB接到点火1信号,航天飞机基本弯曲载荷模式初始化(按外储箱顶部为标准,朝向外储箱方向移动65厘米(25.5英寸)。
点火2命令使多余的标准起爆器起爆,从薄挡片上落入火焰管,由此点燃安全发火机构中的增压火药(pyro booster charge), 增压火药点燃点火启动器中的炸药,燃烧产物点燃固体发动机点火器,点火器瞬间点燃SRB垂直方向上全部推进剂表面。
在T时刻,两台SRB在四台机载计算机发出的指令下点火,SRB上的爆炸螺栓触发,机载主计时系统,事件计时器,任务时间计时器启动,三台主发动机推力达到100%,地面发射序列结束。
发动机推力在最大动压区域(Max Q)能调节减小,推进剂初始是星形填装,随后逐渐燃烧变成圆形外表面,表面积减小,因此推力减小。
分离
当固体发动机室压传感器经过冗余管理系统,中值选择后,两台SRB的首端室压低于345kPa(50psi),SRB分离过程启动。另有备份方案是比对点火至当前时刻所经历的时间。
分离过程启动后,推力矢量系统控制传动机移向零位,将主推进系统设为“第二级”模式(启动0.8秒后)以确保两台SRB推力都降至44吨以下。轨道器偏航姿态持续4秒,SRB推力降至27吨以下。分离指令由轨道器下达,SRB接到指令后在30毫秒内,起爆标准起爆器和分离发动机,与外储箱分开。每台SRB的每一端都有四台分离发动机。
前附着点有一个球,与外储箱的插口通过螺栓连接。螺栓两端含有标准起爆器。尾部附着点有三部分组成:上杆,下杆和斜杆。每个支杆两端都装有标准起爆器。
安全自毁系统
安全自毁系统(RSS)是当航天飞机失控后,由远程遥控自毁全机或部分,以减少爆炸碎片,有毒物质等。目前安全自毁系统只使用过一次,即在挑战者号解体37秒后。
每台SRB有一套安全自毁系统,系统可接受由地面发出的两条指令(预备和点火)。只有当航天飞机越过发射轨迹红线时,自毁系统才会使用。
自毁系统由两个天线耦合器,指令接收/解码机,双分配器,安全发火机构(含两个NASA标准起爆器),两个引爆信管总管(CDF),七个CDF集成,一个线性火药(LSC)。
天线耦合器为无线电频率和地面支持设备指令提供适当阻抗。指令接收机调谐自毁指令频率,将输入信号送到分配器。指令解码器保证只有正确的指令进入分配器。分配器也有保证指令正确的设备。
标准起爆器产生火花点燃CDF,进而点燃LSC引爆航天飞机。安全发火机构在发射前和分离过程起到隔离标准起爆器和CDF的作用。
第一个预备信号,开启自毁程序,点亮位于指令长和成员舱显示和控制板上一盏灯。第二个信号就是点火指令。
SRB上的分配器是交叉相连的,如果一个SRB收到预备或者自毁信号,另一个SRB也将得到信号。
自毁系统电池为自毁A系统供电,回收电池为自毁B系统和回收系统供电。在SRB分离序列中,自毁系统电源关闭,回收系统得到供电。
降落和回收
发现号执行STS-116任务时抛弃的助推器,漂浮在离卡纳维拉尔角240公里的大西洋海面。
分离前,轨道器向SRB发出指令开启回收逻辑系统。同时发出指令开启三个端头罩推力器(以便展开引导伞和降落伞),锥体环起爆器(以便展开主降落伞),断开主降落伞连接。
回收序列从高空空压开关运行开始,触发端头罩推力器,抛除端头罩,放出引导伞。端头罩分离预定高度4786米,约在SRB分离218秒后。直径3.5米的引导伞拉动连接切割刀的系索,切断减速伞的固定环带。引导伞拉出减速伞包悬挂带,使之从原位置展开。十二根长32米的悬挂带伸开后,直径16.5米的减速伞打开。减速伞可承受约143吨重量,自重544kg。
减速伞展开后,SRB呈尾端在下状态。在预定高度1676米,SRB分离243秒后,低空空压开关打开,锥台体分离,减速伞将锥台体拉离SRB。主伞悬索从位于锥台内展开,全长62米,接着三个主伞展开,一段时间延迟后,主伞收束绳断开,主伞张开至原始尺寸。每个伞直径45米,承重88吨,自重988kg。锥台体分离20秒后,喷管延伸部分离。
SRB分离279秒后,以23m/s的速度溅落海面。溅落点约离佛罗里达州东海岸240公里(130海里)。由于SRB是喷管先入水,空气已充满内部,使得SRB漂浮,前端露出水面9米。
STS-114任务使用的SRB被回收运回卡纳维拉尔角
目前的设计是保留主伞至溅落。盐水活化释放设备(SWAR)集成到主伞总力管中,以简化回收工作,并减小对SRB的损伤。
特别打造的NASA回收船, Freedom Star 和 Liberty Star ,前往回收SRB及相关设备。助推器被定位后,潜水员将潜水运作设备(DOP)放入喷管中,向发动机壳体内注入空气,使SRB变为水平漂浮以便拖运。随后回收船将SRB及其它组件拖回肯尼迪航天中心。
挑战者号事故
挑战者号执行STS-51-L任务前,相机捕捉到烟从右侧SRB冒出
罗杰斯委员会报告指出挑战者号失事是由SRB的连接设计缺陷引起的。 停飞期间,对挑战者号残骸的详细的结构分析发现,SRB与外储箱的连接环在冲击下产生过载碰撞。为了修正此缺陷,连接环被重新设计为360°环绕助推器。以前的设计只是270°环绕。
此外,专门的结构测试发现固定柱与尾裙部的连接焊接存在问题,因此尾裙部的尾环增加了加强梁。
两处改动使每台SRB增重204 kg(450磅),新助推器名为“重设计固体火箭发动机”(RSRM)。
制造商
SRB的主承包商是锡奥科尔公司位于百翰市的沃萨奇分部。联合太空联盟的固体火箭助推器元件分部负责SRB的集成总装,检验。
其他为SRB提供组件的公司有:
派克-比尔安达公司--卡拉马祖 (密歇根州)(液压泵)
喷气飞机公司--雷德蒙德 (华盛顿州)(联氨燃气发生器)
Arde公司--莫瓦 (新泽西州) (联氨供给模块)
Arkwin工业公司--韦斯特伯里 (纽约州) (液压容器)
艾登塞矢量分部--新镇 (宾夕法尼亚州) (集成电子设备)
邦迪克斯公司--泰特波罗 (新泽西州) (集成电子设备)
综合控制设备公司--艾尔塞贡度 (加利福尼亚州) (联氨)
Eldec公司--林伍德 (华盛顿州)(集成电子设备)
爆破技术公司--费尔菲尔德 (加利福尼亚州) (约束起爆引信总管)
Gaco Western--西雅图 (华盛顿州) (Hypalon涂料)
洛克希德·马丁公司--丹佛 (科罗拉多州) (陀螺仪启动控制器)
穆格公司--东欧罗拉 (纽约州) (伺服传动机构,燃料隔离阀)
摩托罗拉公司--斯科茨代尔 (亚利桑那州)(安全自毁接收机)
先锋降落伞公司--曼彻斯特 (康涅狄格州) (降落伞)
斯佩里兰德飞行系统公司--菲尼克斯 (亚利桑那州) (多路器 / 多路分配器)
特利丹公司--刘易斯堡 (田纳西州) (定位辅助发射机)
ATK发射系统公司--百翰市 (犹他州) (分离发动机)
汉胜公司--罗克福德 (伊利诺斯州) (辅助动力系统)
VACCO工业公司--艾尔蒙特 (加利福尼亚州) (安全发火机构)
Voss工业公司--克里夫兰 (俄亥俄州)(SRB固定带)
先进固体助推器
NASA曾计划在自己的工厂制造新的先进固体助推器(ASRB)来取代“挑战者号”之后的航天飞机所用助推器。ASRB将能产生额外推力来增加航天飞机载荷,以便能运送组件到国际空间站。在花费了20亿美元之后,该项目被取消,而“超轻型外储箱”替换之前发射时挂载的“轻型外储箱”。现在ASRB的外壳和“开路者号”一起陈列在位于亨茨维尔的美国太空和火箭中心。
纤维缠绕壳体
为了在范登堡空军基地的SLC-6发射台上讲航天飞机送入极轨道,SRB采用更轻的纤维缠绕壳体(FWC)代替肯尼迪航天中心发射时用的钢制壳体。与常规SRB采用了曾导致挑战者号事故的有缺陷的安装接头设计不同,纤维缠绕壳体采助推器采用双尾("double tang")连接设计(可在主发动机点火离地前的震动中使助推器保持相对位置不变),但仍使用两个O形密封环。
五段式助推器
在2003年“哥伦比亚号”事故之前,NASA曾考虑过将现有的四段式发动机换成五段式助推器,或者换成采用宇宙神五号或德尔塔四号技术的"flyback"液体助推器。采用五段式设计对现有航天飞机结构改动小,但能增加9,100 kg (20,000 磅 )有效载荷到国际空间站的倾斜轨道,并且消除了执行“航天飞机异常模式”的危险,甚至可以在太平洋上空采用“双向曲折机动”飞往极轨道。哥伦比亚事件之后,NASA搁置了五段式助推器研发,而为了星座计划中的战神一号和战神五号又复兴了此计划。
未来应用
NASA计划将SRB的设计和基本结构用于战神系列火箭。2005年,NASA宣布航天飞机衍生运载器将用于运送猎户座飞船至近地轨道,随后送往月球。而SRB衍生的运载器名为战神一号。原计划采用原先的四段式发动机作为第一级,第二级使用一台液体发动机。2006年提出并改进至今的计划是采用五段式发动机做第一级,第二级采用阿波罗计划的产物J-2发动机的衍生品J-2X发动机。为安置SRB原先的端头罩部分,战神一号使用一段锥形间级来间接第一级和第二级。同时将采用更大更重的降落伞以便回收。
重型运载火箭战神五号的原设计方案是第一级采用五台SSME发动机和一对五段式发动机为助推器。当前设计是采用六台RS-68B发动机和一对5.5段式助推器(类似已退役的泰坦34-D火箭配置)。重新设计后的战神五号将比土星五号,N1火箭,能源号火箭更长,推力更大。虽然目前关于助推器的回收和重用还有没有最终方案,但很可能采用和航天飞机时代相同的过程。因为用于战神五号的助推器其飞行轨迹和航天飞机助推器几乎相同。
DIRECT计划使用的运载器与战神系列不同,将在德尔塔四号衍生火箭上采用一对原始四段式发动机配合RS-68发动机。
参见
固体火箭助推器
PEPCON事故
参考来源
条目一部分来自NASA官方网站中属于公共领域的部分,更多信息参见NASA版权页
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
相关资料
- 有价值
- 一般般
- 没价值