族谱网 头条 人物百科

螺线

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:497
转发:0
评论:0
二维螺线费马螺线等角螺线双曲螺线圆内螺线弯曲螺线阿基米德螺线连锁螺线柯奴螺线欧拉螺线阿基米德螺线对数螺线费马螺线双曲螺线介绍人名单Cook,T.,1903.Spiralsinnatureandart.Nature68(1761),296.Cook,T.,1979.Thecurvesoflife.Dover,NewYork.Habib,Z.,Sakai,M.,2005.Spiraltransitioncurvesandtheirapplications.ScientiaeMathematicaeJaponicae61(2),195–206.Dimulyo,S.,Habib,Z.,Sakai,M.,2009.Faircubictransitionbetweentwocircleswithonecircleinsideortangenttotheother.NumericalAlgorithms...

二维螺线

费马螺线

等角螺线

双曲螺线

圆内螺线

弯曲螺线

阿基米德螺线

连锁螺线

柯奴螺线

欧拉螺线

螺线

阿基米德螺线

螺线

对数螺线

螺线

费马螺线

螺线

双曲螺线

介绍人名单

Cook, T., 1903. Spirals in nature and art . Nature 68 (1761), 296.

Cook, T., 1979. The curves of life . Dover, New York.

Habib, Z., Sakai, M., 2005. Spiral transition curves and their applications . Scientiae Mathematicae Japonicae 61 (2), 195 – 206.

Dimulyo, S., Habib, Z., Sakai, M., 2009. Fair cubic transition between two circles with one circle inside or tangent to the other . Numerical Algorithms 51, 461–476[1].

Harary, G., Tal, A., 2011. The natural 3D spiral . Computer Graphics Forum 30 (2), 237 – 246[2].

Xu, L., Mould, D., 2009. Magnetic curves: curvature-controlled aesthetic curves using magnetic fields . In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association[3].

Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K., Wang, S., 2004. Designing fair curves using monotone curvature pieces . Computer Aided Geometric Design 21 (5), 515–527[4].

A. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data . Computer Aided Geometric Design, 27(3), 262-280, 2010[5].

A. Kurnosenko. Two-point G2 Hermite interpolation with spirals by inversion of hyperbola . Computer Aided Geometric Design, 27(6), 474-481, 2010.

Miura, K.T., 2006. A general equation of aesthetic curves and its self-affinity . Computer-Aided Design and Applications 3 (1–4), 457–464[6].

Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. Derivation of a general formula of aesthetic curves . In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp. 166 – 171[7].

Meek, D., Walton, D., 1989. The use of Cornu spirals in drawing planar curves of controlled curvature . Journal of Computational and Applied Mathematics 25 (1), 69–78[8].

Farin, G., 2006. Class A Bézier curves . Computer Aided Geometric Design 23 (7), 573–581[9].

Farouki, R.T., 1997. Pythagorean-hodograph quintic transition curves of monotone curvature . Computer-Aided Design 29 (9), 601–606.

Yoshida, N., Saito, T., 2006. Interactive aesthetic curve segments . The Visual Computer 22 (9), 896–905[10].

Yoshida, N., Saito, T., 2007. Quasi-aesthetic curves in rational cubic Bézier forms . Computer-Aided Design and Applications 4 (9–10), 477–486[11].

Ziatdinov, R., Yoshida, N., Kim, T., 2012. Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions . Computer Aided Geometric Design 29 (2), 129 – 140[12].

Ziatdinov, R., Yoshida, N., Kim, T., 2012. Fitting G2 multispiral transition curve joining two straight lines , Computer-Aided Design 44(6), 591–596[13].

Ziatdinov, R., 2012. Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function . Computer Aided Geometric Design 29(7): 510-518[14].

Ziatdinov, R., Miura K.T., 2012. On the Variety of Planar Spirals and Their Applications in Computer Aided Design . European Researcher 27(8-2), 1227-1232[15].


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
扫一扫添加客服微信