族谱网 头条 人物百科

代数数论

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:542
转发:0
评论:0
唯一因子分解和理想类群代数数域K的整数环OK的元素的素分解和整数环Z的素数分解有不同之处,不是每个OK的元素都唯一分解。虽然OK元素的唯一分解束在某些情况下可能成立,如高斯整环,但在其它情况下可能会失败,如二次域Z[√-5]中,6就不是唯一分解|:6=2⋅⋅-->3=(1+−−-->5)⋅⋅-->(1−−-->−−-->5).{\displaystyle6=2\cdot3=(1+{\sqrt{-5}})\cdot(1-{\sqrt{-5}}).}OK的理想类群是一个整数环OK的元素是否唯一因子分解的度量,特别是当整数环OK理想类群是平凡群时,当且仅当O为唯一分解整环。0的唯一因子分解和OK素理想间关系。OK元素的唯一分解可能成立:这时OK的理想的唯一分解成素理想(即它是一个戴德金整环)。这使得在研究OK的素理想尤其重要。从另方面,从整数环Z更改为代数数域K的整数环OK后,整数环Z中素数就能...

唯一因子分解和理想类群

代数数域K的整数环OK的元素的素分解和整数环Z的素数分解有不同之处,不是每个OK的元素都唯一分解。虽然OK元素的唯一分解束在某些情况下可能成立,如高斯整环,但在其它情况下可能会失败, 如二次域Z [√-5]中,6就不是唯一分解|:6=2⋅ ⋅ -->3=(1+− − -->5)⋅ ⋅ -->(1− − -->− − -->5).{\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})\cdot (1-{\sqrt {-5}}).}

OK的理想类群是一个整数环OK的元素是否唯一因子分解的度量,特别是当整数环OK理想类群是平凡群时,当且仅当O为唯一分解整环。0的唯一因子分解和OK素理想间关系。

OK元素的唯一分解可能成立:这时OK的理想的唯一分解成素理想(即它是一个戴德金整环)。这使得在研究OK的素理想尤其重要。从另方面,从整数环Z更改为代数数域K的整数环OK后,整数环Z中素数就能生成Z素理想(其实,Z的每一个素理想(p)的形式是:pZ)可同一素数在O中可能不再生成素理想,例如,在高斯整环中,理想2Z[i]不再是素理想:

但理想3Z[i]是一个素理想。高斯整环唯一因子分解完整的答案使用费尔马大定理,其结果为:

得出这种简单的结果对更一般的整数环来说是代数数论的基本问题。当代数数域K是有理数Q的阿贝尔扩张时(即有交换伽罗瓦群的扩张)类域论实现了这一目标。

素元和素点

(根据类域论,因K为有理域Q时OK才有唯一分解,以下K=Q,注意有理域Q和有理数域不同,实域R和实数域不同)

在OK素理想的概念的一个重要的推广是理想论,也叫赋值论,这两种方法之间的关系如下:

运算为通常的绝对值函数|·|,映射有理域Q→实域R的,令绝对值函数|·|p: 定义称为p-adic绝对赋值,p∈Z中的素数。由奥斯特洛夫斯基的定理,所有p-adic绝对赋值对Q是等价类,p-adic绝对赋值可看成类似通常素数。更普遍的,代数数域K的绝对赋值称为一个素点。K中素元分两类:像p-adic绝对赋值|·|p这种等价类是有限的,被称为有限素元(有限素点)。而通过复域C的模|·|方式定义的素元可看成复域C一个无限子集,被称为无限素元(或无限素点)。因此,一般表示Q的素元集合为{2,3,5,7,...,∞},在这种情况下|·|∞是有理域Q的素元(素点)。

K的无限素元可有嵌入同态K→C(即非零的环同态,从K到C)。具体来说,可把嵌入分成两个不相交的子集,那些像在R中算一个子集S1,其余的为另一子集S2。S1的每个嵌入σ:K→R,对应唯一一个和通常绝对值一样的绝对赋值;这种方式产生的一个素元的被称为一个实素元(或实素点)。S2的一个嵌入τ:是K→C不包含在R中的的像,可以形成另一个唯一的嵌入τ,称为共轭嵌入,组成的复共轭映射为τ的C→C.而此绝对赋值为复数的模:|z| = |z| 。这样的素元叫一个复素元(或复素点)。这样无限素元的集合的描述如下:每个无限素元对应到一个唯一的嵌入σ:K→R,或一对共轭嵌入τ,τ:K→C.实素点素数表示为r1 ,复素点表示为r2,嵌入ķ→C的总数为r1+2r2,(事实上,等于K/ Q的扩张次数:[K:Q])。

单位

算术基本定理说明Z环的乘法结构为:每一个非零整数可以表为唯一的若干素数次幂和±1乘。这对OK的理想的唯一分解对一部分理想正确,不能全正确是因为±1,因为整数1和-1是Z环的可逆元素(即单位,两者组成一个乘法群叫单位群,记为Z,是个2阶循环群)。更普遍的是,在OK的形式下全部素元乘法可逆组成一个乘法群,记为O,群素元称为OK的单位,这个群比2阶循环群Z×阶大。由狄利克雷单位定理可得:单位群是交换群。更确切的有伽罗瓦模形式:

有限循环群即为K的单位群O。OK单元群的阶大小,OK的格结构,在类数公式可以看出。

局部域

在素点w对数域K完备化给出了一个完全域。如果赋值是阿基米德赋值,得到R或C,都是完全域。如果非阿基米德赋值,则是有理素元的离散赋值,得到有限扩张Kw / Qp: :这离散赋值域也是一个完全域,且是有限剩余域。

局部方法简化了域的算术,能局部研究问题。例如克罗内克韦伯定理,可以轻松地从局部状态进行。局部域的研究背后的哲学,主要是出于几何方法。在代数几何,可通过对极大理想的点集局部化的变量研究入手。而全局信息,可通过局部化综合在一起得出。在代数数论,局部研究问题是主要方法之一,通过在数域代数中对整数环的素元入手,再对分式域研究得出全局信息。

主要结果

理想类群阶的有限性问题。代数数论一个经典结论是:代数数域的理想类群阶有限。理想类群阶大小叫类数,常记为h。

狄利克雷单位定理

狄利克雷的单位定理提供了OK 单位乘群O× 的结构描述,它指出:OK≃ ≃ -->{\displaystyle \simeq }Z⊕(finite circle group)其中有限循环群是O×的所有单位根组成,且r = r1 + r2 − 1,或者说,OK是阶为r = r1 + r2 − 1阿贝尔群贝尔群,且其扭元素由O×的所有单位根组成

阿廷互反律

互反律

二次互反律

三次互反律

四次互反律

类数公式

参考文献

Kenneth Ireland and Michael Rosen, "A Classical Introduction to Modern Number Theory, Second Edition", Springer-Verlag, 1990

Ian Stewart and David O. Tall, "Algebraic Number Theory and Fermat"s Last Theorem," A. K. Peters, 2002

Cassels, J. W. S.; Fröhlich, Albrecht (编), Algebraic number theory, London: Academic Press, 1967, MR 0215665 

Fröhlich, Albrecht; Taylor, Martin J., Algebraic number theory, Cambridge Studies in Advanced Mathematics 27, Cambridge University Press, 1993, ISBN 0-521-43834-9, MR 1215934 

Lang, Serge, Algebraic number theory, Graduate Texts in Mathematics 110 2, New York: Springer-Verlag, 1994, ISBN 978-0-387-94225-4, MR 1282723 

Jürgen Neukirch, Algebraic Number Theory (1999), Springer. ISBN 3-5406-5399-6

Jean-Pierre Serre, Cours d"arithmétique (1988), PUF. ISBN 2-13-041838-X


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 数论
理论根据传统说法,数论的创始人是迦毗罗仙人(因此又被称为“迦毗罗论”)。但是,没有任何可靠的证据能证明这一点。数论的核心思想是,宇宙由两大本原组成:补卢沙(最高精神)和原质(原初物质)。补卢沙,或称为神我,也就是梨俱吠陀中著名的《原人歌》里的原人。原人歌中说原人是宇宙的本原,但众天神(提婆)却用他作了祭祀的牺牲,于是从他的躯体产生世间万物(尤其是四个种姓)。这实际上是反映了祭祀万能的思想。原质,按数论的观点,由所谓“三德”组成。三德分别是萨埵(喜),罗阇(忧)和答磨(暗)。根据《瑜伽胜论》,三德具有互相矛盾(或制约)的属性。“萨埵”倾向于探究事物的本原,“罗阇”倾向于动性的傲慢、贪婪和嗔怒,“答磨”倾向于惰性和不敏感。一切事物都是原质在三德的作用下产生的。数论哲学又进一步把事物归类为“二十五谛”。二十五谛分别为:原质(或称为非显)、觉(菩提)、我慢、眼、耳、鼻、舌、皮肤(以上五种合称为五知...
· 数论
数论初期的铺垫工作数论早期铺垫有三大内容:欧几里得证明素数无穷多个。寻找素数的埃拉托斯特尼筛法;欧几里得求最大公约数的辗转相除法。公元420至589年(中国南北朝时期)的孙子定理。以上工作成为现代数论的基本框架。数论中期工作在中世纪时,除了1175年至1200年住在北非和君士坦丁堡的斐波那契有关等差数列的研究外,西欧在数论上没有什么进展。数论中期主要指15-16世纪到19世纪,是由费马、梅森、欧拉、高斯、勒让德、黎曼、希尔伯特等人发展的。最早的发展是在文艺复兴的末期,对于古希腊著作的重新研究。主要的成因是因为丢番图的《算术》(Arithmetica)一书的校正及翻译为拉丁文,早在1575年Xylander曾试图翻译,但不成功,后来才由Bachet在1621年翻译完成。早期的现代数论费马费马皮埃尔·德·费马(1601–1665)没有著作出版,他在数论上的贡献几乎都在他写给其他数学家的信上,以...
· 初等数论
初等数论的主题素数素数判定法则因数素数公式埃拉托斯特尼筛法有趣的数连分数幻方原根同余倒数的性质数论函数经典的定理
· 解析数论
解析数论的分支解析数论主要分为两种,区分方式主要是因为待求解问题种类的不同,而比较不是因为使用技巧上的基本差异。乘性数论(英语:Multiplicativenumbertheory)处理的是质数的分布,例如估计一个区间内的质数个数,包括质数定理及狄利克雷定理。堆叠数论(英语:additivenumbertheory)是有关整数的堆叠结构,像是哥德巴赫猜想认为所有大于2的偶数都可以表示为二个质数的和。另一个堆叠数论的主要成果是华林问题的和。历史微积分和复变函数论发展以后,产生了解析数论。该学科的第一个主要成就是狄利克雷用解析方法证明了狄利克雷定理。依靠黎曼ζ函数对素数定理的证明是另一个里程碑。解析数论是解决数论中艰深问题的重要工具,数论中有些问题必须由解析方法才能提出或解决。中国的华罗庚开启了中国解析数论学派,王元、陈景润、潘承洞等人在“哥德巴赫猜想”上也有相当进展,陆续证明了“3+4”、“...
· 实变函数论
内容实数的构造有许多种将实数定义为有序域的方式。合成的作法会提供许多实数的公理,将实数变成完备有序域。在一般集合论的公理下,可以证明这些公理都是明确的,也就是说有一个公理的模型,任两个模型都是同构的。这些模型中需要有一个有明确的定义,而大部分的模型都可以用实数为有序域时的基本性质来得到。实数的有序性实数有许多重要的特性是和数学中格的定义有关,这些性质也是复数所没有的。其中最重要的是,实数形成有序域,实数的有序满足反对称性、传递性及完全性,属于全序关系,而且实数有最小上限属性(英语:leastupperboundproperty)。实数中的偏序关系带来了实变分析中许多重要的定理,例如单调收敛定理、介值定理及中值定理。在实变分析中这些定理只针对实数,不过许多的结果可以应用在其他的数学对象(英语:mathematicalobject)。特别是许多泛函分析及算子理论(英语:operatortheo...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信