族谱网 头条 人物百科

量子色动力学

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:534
转发:0
评论:0
历史静态夸克模型建立之后,在重子质量谱和重子磁矩方面取得了巨大成功。但是,某些由一种夸克组成的粒子的存在,如ΔΔ-->++,ΩΩ-->−−-->,ΔΔ-->−−-->{\displaystyle\Delta^{++},\Omega^{-},\D物理学a^{-}}等,与物理学的基本假设广义泡利原理矛盾。为解自由个问题,物理学家引入了颜色自由度,并且颜色最少有3种。这个时候颜色还只是引入的某种量子数,并没有被认为是动力学自由度。静态夸克模型建立之后,经历了十年左右的各种实验,都没有发现分数电荷的自旋12{\displaystyle{\frac{1}{2}}}的夸克存在,物理学家被迫接受了夸克是禁闭在强子内部的现实。然而,美国的斯坦福直线加速器中心SLAC在七十年代初进行了一系列的轻强子深度非弹性散射实验,发现强子的结构函数具有比约肯无标度性(BjorkenScaling)。为解释这个令人惊奇的...

历史

静态夸克模型建立之后,在重子质量谱和重子磁矩方面取得了巨大成功。但是,某些由一种夸克组成的粒子的存在,如 Δ Δ --> + + , Ω Ω --> − − --> , Δ Δ --> − − --> {\displaystyle \Delta ^{++},\Omega ^{-},\D物理学a ^{-}} 等,与物理学的基本假设广义泡利原理矛盾。为解自由个问题,物理学家引入了颜色自由度,并且颜色最少有3种。这个时候颜色还只是引入的某种量子数,并没有被认为是动力学自由度。

静态夸克模型建立之后,经历了十年左右的各种实验,都没有发现分数电荷的自旋 1 2 {\displaystyle {\frac {1}{2}}} 的夸克存在,物理学家被迫接受了夸克是禁闭在强子内部的现实。然而,美国的斯坦福直线加速器中心SLAC在七十年代初进行了一系列的轻强子深度非弹性散射实验,发现强子的结构函数具有比约肯无标度性( Bjorken Scaling )。为解释这个令人惊奇的结果,费曼由此提出了部分子模型,假设强子是由一簇自由的没有相互作用的部分子组成的,就可以自然的解释比约肯无标度性( Bjorken Scaling )。更细致的研究确认了部分子的自旋为 1 2 {\displaystyle {\frac {1}{2}}} ,并且具有分数电荷。

部分子模型和静态夸克模型都取得了巨大成功,但是两个模型对强子结构的描述有严重的冲突,具体来讲就是夸克禁闭与部分子无相互作用之间的冲突。这个问题的真正解决要等到渐近自由的发现。格娄斯,韦尔切克和休·波利策的计算表明,非阿贝尔规范场论中夸克相互作用强度随能标的增加而减弱,部分子模型的成功正预示着存在 S U ( N ) {\displaystyle SU(N)} 的规范相互作用,N自然的就解释为原先夸克模型中引入的新自由度--颜色。

理论

拉氏密度为

其中

微扰量子色动力学

在反应过程有一个大的能标的时候,量子色动力学耦合常数 α α --> s {\displaystyle \alpha _{s}} 小于1,可以将反应截面展开为 α α --> s {\displaystyle \alpha _{s}} 的幂级数,这种处理量子色动力学的方法叫做微扰量子色动力学 。

微扰量子色动力学首先被应用到轻子强子深度非弹性散射,计算轻子部分子散射过程的高阶修正,成功解释了比约肯无标度性( Bjorken Scaling )因为能标的变化导致的微小破坏。这坚定了物理学家的信心,相信量子色动力学是描述强相互作用的正确理论。70到80年代微扰量子色动力学推广到其他各种高能反应过程,如 e + e − − --> {\displaystyle e^{+}e^{-}} 产生强子的反应,强子强子对撞产生双轻子过程,以及强子强子对撞产生大横动量强子的过程,所得结果与实验在数量级数量级的层次上是符合的。

理论方面,微扰量子色动力学也有许多新的成果。为处理高阶修正 α α --> s n {\displaystyle \alpha _{s}^{n}} 产生的发散(也就是高阶修正在某些情况下趋近于无穷大),人们发展了QCD因子化定理,将发散吸收到普适的部分子分布函数或者部分子碎裂函数中。人们利用计算机和符号计算软件,将微扰量子色动力学推进到3圈的精度,也就是 α α --> s 3 {\displaystyle \alpha _{s}^{3}} 的修正。计算到这个精度,需要处理几万甚至几十万个费曼图,需要用高性能计算机,更重要的是高效率高智能的符号计算软件。这方面的进展,是人类通过机器扩展自己能力极限的惊人之作。

非微扰量子色动力学

在低能标下,强相互作用强度很强,微扰方法就失效了,迄今还没有切实有效的解析方法可以处理,而最为常见有效的还是通过肯尼斯·威尔逊等人提出的 格点场论 ( 英语 : Lattice QCD ) 进行数值模拟来求解。


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 量子电动力学
历史保罗·狄拉克辐射与物质间相互作用的第一套量子理论,是由英国物理学家保罗·狄拉克提出的,他在1920年代就成功计算出原子的自发发射系数。狄拉克用一整组的谐振子,加上新开发的粒子创生及消灭算符,成功地描述了电磁场的量子化。在之后的几年,沃尔夫冈·泡利、尤金·维格纳、帕斯库尔·约当、维尔纳·海森堡都在这方面作出了贡献,还有恩里科·费米更提出了一套优雅的量子电动力学表述,至此物理学家开始相信,原则上他们可以计算出所有涉及光子及带电粒子的物理过程。然而,费利克斯·布洛赫和阿诺德·诺德西克(ArnoldNordsieck),与维克托·魏斯科普夫于1937年及1939年的后续研究发现,这样的计算只能在一阶摄动理论上获得可靠结果,而这个问题罗伯特·奥本海默早在1930年已经指出了。在高阶时,数列中出现无限,使得计算完全没有意义,因此物理学家相当怀疑这套理论是否真的具有一致性。而当时对此并无答案,这个问
· 动力学
力力是一种造成物体加速的影响,也可以感官体验为一种推挤或拖拉,这会造成物体改变方向、改变速度、暂时性或永久性的形变。力会迫使改变物体的运动状态。力是一个矢量,具有大小和方向。牛顿运动定律牛顿运动定律描述物体与力之间的关系,被誉为是经典力学的基础。这定律是英国物理泰斗艾萨克·牛顿所提出的三条运动定律的总称,其现代版本通常这样表述:第一定律(惯性定律):存在某些参考系,在其中,不受外力的物体都保持静止或匀速直线运动。第二定律(加速度定律):施加于物体的合外力等于此物体的质量与加速度的乘积。第三定律(作用力与反作用力定律):当两个物体互相作用时,彼此施加于对方的力,其大小相等、方向相反。牛顿在发表于1687年7月5日的钜著《自然哲学的数学原理》里首先整理出这三条定律。应用这些定律,牛顿可以分析各种各样动力运动。例如,在此书籍第三卷,牛顿应用这些定律与牛顿万有引力定律来解释开普勒行星运动定律。分支...
· 酶动力学
历史1902年,维克多·亨利(VictorHenri)提出了对酶动力学进行定量的理论,但是由于忽略了溶液中氢离子浓度的影响,他的实验结果无法验证这一理论。在1909年,PeterLauritzSørensen提出了对数的pH尺度并引入“缓冲”这一概念后,德国化学家LeonorMichaelis和他的加拿大博士后MaudLeonoraMenten重复了Henri的实验,实验结果肯定了Henri所提出的方程。这一方程被称为Henri-Michaelis-Mentenkinetics或Michaelis-Mentenkinetics,中文对应名称为米氏方程。这一工作被G.E.Briggs和J.B.S.Haldane所进一步发展,此二人所提出的动力学方程至今仍得到广泛使用。多层基板的反应多层基板的反应,后续复杂的速率方程描述如何衬底的约束,以及以何种顺序。化学机理一个很重要的目的测量酶动力学是确定...
· 量子
历史量子物理是研究量子化的物理分支,在1900年根据热辐射理论延伸建立量子理论。由于马克斯·普朗克(M.Planck)试图解决黑体辐射问题,所以他大胆提出量子假设,并得出了普朗克辐射定律,沿用至今。当时德国物理界聚焦于黑体辐射问题的研究。马克斯·普朗克在1900年12月14日的德国物理学学会会议中第一次发表能量量子化数值、Avogadro-Loschmidt数的数值、一个分子摩尔(mole)的数值及基本电荷。其数值比以前的更准确,提出的理论也成功解决了黑体辐射的问题,标志着量子力学的诞生。量子假设的提出有力地冲击了经典物理学,促进物理学进入微观层面,奠基现代物理学。但直到现在,物理学家关于量子力学的一些假设仍然不能被充分地证明,仍有很多需要研究的地方。相关方程黑体辐射量子方程黑体辐射量子方程是量子力学的第一部分。在1900年10月7日面世。当物体被加热,它以电磁波的形式散发红外线辐射。物体...
· 气动力学
和液压系统的比较气压系统和液压系统都是流体动力(英语:fluidpower)的应用。气动力学用容易压缩的空气或是气体做为动力来源,而液压系统用不容易压缩的液体(如液压油)为动力来源。大部分工业气压系统的压力约在80至100磅力每平方英寸(550至690千帕斯卡),而液压系统的压力约在1,000至5,000psi(6.9至34.5MPa),特殊应用可以超过10,000psi(69MPa)。气压系统的优点可简化设计及控制:用标准的气缸及元件即可设计,用简单的开关控制即可操作。可靠度:气动系统的寿命长,且不太需要维护,因为气体可压缩,设备较不会因为冲击而损坏。气体可以吸收过大的受力,而液压系统会直接将力传送出去。气动系统在电力中断后,因为压缩气体的压力,仍可以运作一小段时间。安全:相较于使用液压油的液压系统,气压系统失火的可能性小很多,新型的机器多半允许一定程度过载,而且在过载时机器处于安全状态...

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信