金属量
测量与计量
一般来说,恒星光谱中的铁线很容易被辨认与测量。同时,铁也是核聚变反应所能产生的最重元素。基于这两个原因,天文学家常利用铁与氢的比来作为金属丰度的指标。太阳的金属丰度大约是质量的1.6%。其它的恒星,金属丰度常用“[Fe/H]”表示,其值为恒星铁氢比: ( N F e N H ) s t a r {\displaystyle \left({\frac {N_{\mathrm {Fe} }}{N_{\mathrm {H} }}}\right)_{\mathrm {star} }} ,与太阳铁氢比的对数差,公式如下:
此处 N F e {\displaystyle N_{\mathrm {Fe} }} 和 N H {\displaystyle N_{\mathrm {H} }} 是单位体积内铁原子和氢原子的数量。经由这个对数表示的公式,金属量高于太阳的恒星会得到正值,而低于太阳的将会得到负值。这个对数是以10为底的,恒星的数值为+1,则金属丰度是太阳的10倍(10 ),数值为+2,则金属丰度是太阳的100倍(10 ),数值为+3,则金属丰度是太阳的1000倍(10 )。反之,数值为-1,则金属丰度是太阳的十分之一(10 ),数值为-2,则金属量是太阳的百分之一(10 ),依此类推。 年轻的第一星族星比年老的第二星族星明显的有更高的铁与氢的比率。太初的第三星族星的金属量估计低于-6,也就是说低于太阳金属量的百万分之一。
除了铁以外,氧也是用来定量描述金属丰度的元素之一。常见表示法有“[O/H]”或“[O/Fe]”,计算公式和上式相同,只要代换成相应的元素密度就好。
第一星族星
第一星族和第二星族
第一星族或是 富金属 星是年轻的恒星,金属量最高。地球的太阳是富金属的例子,它们通常都在银河的螺旋臂内。
一般而言,最年轻的恒星,越极端的第一星族星被发现的位置越在最周边,依此类推,太阳被认为位居第一星族星的中间。第一星族星有规则的绕着银心的椭圆轨道和低的相对速度。高金属量的第一星族星使它们比另外两种星族更适于产生行星系统,而行星,特别是类地行星是由富含金属的吸积盘形成的。
在第一星族和第二星族之间有中间的 星盘星族 。
第二星族星
第二星族或 贫金属 星只有相对是少量的金属。理想的 相对的少量 必须是除了氢和氦之外,所有的元素都远低于富金属天体中的相对数量,即使在大爆炸之后的137亿年,金属成分在宇宙整体化学元素中的百分比仍然是微量的。然而,贫金属天体依然是比较原始的,这些天体是在宇宙较早的时间里就形成的。它们通常出现在接近星系中心的核球,中间的第二星族星;还有星系晕的星晕第二星族星,是更老的恒星,也更缺乏金属。球状星团也包含大量的第二星族星。 一般也相信第二星族星创造了周期表中,除了不稳定的,所有其它的元素。
科学家已经使用几种不同的探测方法,包括Timothy C. Beers 等人的HK物镜棱镜探测和Norbert Christlieb等人的汉堡-ESO的观测,瞄准了一些最老的恒星,和亮度微弱的原始的类星体。至今,它们已经仔细的观察了大约十个金属量非常贫乏的恒星,像是CS22892-052、CS31082-001、BD +17° 3248、而已知最老的恒星是HE0107-5240、HE1327-2326、HE1523-0901。
第三星族星
NASA的史匹哲望远镜拍到的可能是第三族星的辉光 创建者: NASA / JPL-CALTECH / A. KASHLINSKY (GSFC)。
第三星族星或是 无金属 星是假设中的星族,是在早期宇宙中应该形成的极端重和热,并且不含金属的恒星。它们未曾被直接观测到,但是经由宇宙中非常遥远的引力透镜星系找到间接的证据。 它们也被认为是暗蓝星系的成员。它们的存在是基于大爆炸不可能创造重元素,而在观测到的类星体发射光谱,特别是暗蓝星系中重元素又确实存在的事实。 它也被认为是这些恒星触发了再游离周期。
目前的理论并没有区分出第一颗恒星是否非常巨大。一种经由计算机模拟证实的恒星形成理论,大爆炸没有产生任何的重元素,但很容易产生质量远比现存的恒星更大的恒星。第三星族星的典型质量是数百个太阳质量,远大于现存的恒星。 分析贫金属量的第二星族星,被认为包含了第三星族星所创造的金属,这些没有金属的恒星质量在10至100倍的太阳质量;这也足以解释为何未能观察到不含金属的恒星。但这些理论的验证则要等到NASA的詹姆斯·韦伯望远镜发射之后。新的光谱仪巡天,像是SEGUE或SDSS-II,也可能找到第三族星。
模拟的大爆炸之后4亿年的第一代恒星。
今天,能形成的质量最大恒星是150倍太阳质量;质量更大的原恒星在最初的核反应开始之际将喷发出部分的质量。在没有足够的碳、氧或氮的恒星核心,不管怎样CNO循环都无法进行,且直接进行质子-质子链反应的核聚变反应速率不足以产生足够的能量支撑如此大的庞然巨物。因此恒星将因无法对抗引力坍缩而很快的自我毁灭,最终结果是未经过发光的过程就直接坍缩成为黑洞。这也是天文学家认为第三族星特别奥秘的原因 - 所有的理由都认为它们应该存在,但却必须经由类星体的观测才能解释。
上述的看法应该是没有继续考虑下去的结果。由于p-p链反应的速度太慢,不足以对抗引力收缩,第一代恒星的核心将继续收缩并最终触发3氦过程。3氦过程在1亿K的高温下才能稳定进行,虽然存在第一步反应很不稳定的弊端(质量数为8的 Be核极不稳定,2.6×10 秒就再分裂回 He),但在足够的密度下,整体的两步反应还是能够进行的并产生稳定的 C核。由于3氦过程的反应速度和产能正比于温度的30次方、密度的立方,远远强于p-p反应仅为温度的4次方和密度的1次方,它能够顶住引力收缩。接着 C核逐步累积并最终有足够的丰度维持C-N-O循环。从此,第一代恒星就开始其短暂的主序星阶段——稳定的发光数十万年。
如果这些恒星能够适当的形成,它们的寿命也很短 - 必定短于一百万年。由于现在这种恒星已经不再形成,要观察这种恒星就必须在极端遥远的可见宇宙的边界搜寻,(因为来自极端遥远的星光需要很长的时间才能抵达地球,观察遥远的天体就有如在"回溯时光"。) 而在如此遥远的距离上要解析出恒星,即使对詹姆斯·韦伯望远镜也是件艰钜的任务。
参见
化学元素丰度
星族
星系的形成和演化
恒星演化
金属度分布函数 ( 英语 : Metallicity distribution function )
GRB 090423- 最远的可知的推测的低金属度前体
参考文献
Page 593-In Quest of the Universe Fourth Edition Karl Kuhn Theo Koupelis. Jones and Bartlett Publishers Canada. 2004. ISBN 0-7637-0810-0
Volker Bromm, Richard B. Larson (2004), THE FIRST STARS , Annual Reviews of Astronomy and Astrophysics, vol. 42, pp. 79–118.
^ John C. Martin.What we learn from a star"s metal content. New Analysis RR Lyrae Kinematics in the Solar Neighborhood. [ September 7, 2005] .
^ Lauren J. Bryant.What Makes Stars Tick. Indiana University Research & Creative Activity. [ September 7, 2005] .
^John C. Martin: What we learn from a star"s metal content.
^ Charles H. Lineweaver.An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect. University of New South Wales. 2000 [ 2006-07-23 ] .
^ T. S. van Albada, Norman Baker. On the Two Oosterhoff Groups of Globular Clusters. Astrophysical Journal. 1973, 185 : 477–498.
^ R. A. E. Fosbury; 等.Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357. Astrophysical Journal. 2003, 596 (1): 797–809. 引文格式1维护:显式使用等标签 (link)
^ A. Heger, S. E. Woosley.The Nucleosynthetic Signature of Population III. Astrophysical Journal. 2002, 567 (1): 532–543.
^Formation of the First Stars and Galaxies
免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。
- 有价值
- 一般般
- 没价值