族谱网 头条 人物百科

超新星核合成

2020-10-16
出处:族谱网
作者:阿族小谱
浏览:670
转发:0
评论:0
超新星超新星是恒星发生剧烈爆炸的现象,发生的情况主要是下述两种。第一种是白矮星经由吸收伴星(通常是红巨星)的质量,当他到达钱德拉塞卡极限之后,进行以核心为基础的爆炸。第二种,也是较常见的,是大质量恒星造成的,通常是红巨星,达到铁的核聚变(或燃烧)过程。因为铁是所有元素中束缚能最高的之一,也是核聚变能产生的释放热能最后一种元素。从此之后,所有的核聚变反应开始吸热而使恒星丧失能量,于是恒星的重力迅速的将外面的数层吸入,恒星很快的塌缩,然后形成超新星的爆炸。元素的融合周期表显示宇宙源起源的每个元素。比铁重的元素通常起源于超新星爆炸,由超新星爆炸产生的中子进行r-过程产生。由于超新星爆炸释放出极大数量的能量,也产生了比恒星所能产生更高的温度。如此的高温营造出的环境使原子量高达254的元素也能形成,锎是已知最重的元素,但在地球上只能由人工合成。在核聚变的过程中,恒星核合成所能融合产生的最重元素是镍,...

超新星

超新星是恒星发生剧烈爆炸的现象,发生的情况主要是下述两种。第一种是白矮星经由吸收伴星(通常是红巨星)的质量,当他到达钱德拉塞卡极限之后,进行以核心为基础的爆炸。第二种,也是较常见的,是大质量恒星造成的,通常是红巨星,达到铁的核聚变(或燃烧)过程。因为铁是所有元素中束缚能最高的之一,也是核聚变能产生的释放热能最后一种元素。从此之后,所有的核聚变反应开始吸热而使恒星丧失能量,于是恒星的重力迅速的将外面的数层吸入,恒星很快的塌缩,然后形成超新星的爆炸。

元素的融合

超新星核合成

周期表显示宇宙源起源的每个元素。比铁重的元素通常起源于超新星爆炸,由超新星爆炸产生的中子进行r-过程产生。

由于超新星爆炸释放出极大数量的能量,也产生了比恒星所能产生更高的温度。如此的高温营造出的环境使原子量高达254的元素也能形成,锎是已知最重的元素,但在地球上只能由人工合成。在核聚变的过程中,恒星核合成所能融合产生的最重元素是镍,同位素的原子量可以达到是56。只有质量最大的那些恒星能制造出原子序在硅和镍之间的元素,并以超新星爆炸结束恒星的一生(参见硅燃烧)。被称为s-过程的中子捕获过程,也发生在恒星核合成的阶段,所能产生的最重的同位素是原子量209的铋,但是S-过程主要是在低质量恒星内以很慢的速度进行。

R-过程

当超新星核合成发生时,r-过程(r表示快速)创造出许多富含中子的重同位素,这些同位素会先衰变成稳定的同位素,从而创造出所有重元素富含中子的稳定同位素。这些中子捕获的过程发生在高中子密度与高温的环境下,在r-过程,任何一个遭受高密度中子流轰集的重原子核都会形成极度不稳定并富含中子的核,并且很快的经由β衰变成为原子序较高、但原子量相同并且较为稳定的原子。中子流的密度高得吓人,大约是每秒每平方公分10 颗中子。最先计算出来的动态r-过程,显示演化是随着时间变化的 ,也认为r-过程的丰度是不同中子通量的叠置。低通量的r-过程在原子量 A = 130附近产生第一个非放射性元素的丰值顶;而高通量的则产生放射族的铀和钍元素,并且没有A = 130的峰顶。根据细节,这些过程在一瞬间到数秒钟就可以完成。随后有数百篇的论文运用这种与时间有关的近似方法。有趣的是,在近代唯一在附近的超新星,SN 1987A,并未显现出r-过程的丰富度。现在的想法则认为有些r-过程的产物并未从超新星中被抛出,反而被吞噬成为残骸的中子星或黑洞的一部分。

参考资料

E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Synthesis of the Elements in Stars ,Rev. Mod. Phys.29 (1957) 547 (articleat thePhysical ReviewOnline Archive (subscription required)).

D. D. Clayton, "Handbook of Isotopes in the Cosmos", Cambridge University Press, 2003, ISBN 0 521 823811.

相关条目

临界质量

超新星

核聚变

核分裂

恒星核合成


免责声明:以上内容版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。感谢每一位辛勤著写的作者,感谢每一位的分享。

——— 没有了 ———
编辑:阿族小谱
发表评论
写好了,提交
{{item.label}}
{{commentTotal}}条评论
{{item.userName}}
发布时间:{{item.time}}
{{item.content}}
回复
举报
点击加载更多
打赏作者
“感谢您的打赏,我会更努力的创作”
— 请选择您要打赏的金额 —
{{item.label}}
{{item.label}}
打赏成功!
“感谢您的打赏,我会更努力的创作”
返回

更多文章

更多精彩文章
打赏
私信

推荐阅读

· 核合成
历史化学元素被创造的第一个想法是在宇宙的开始,但是未能成功的发现其途径。在1920年,亚瑟·爱丁顿第一个由观测到的现象建议恒星是经由氢聚变成氦来产生能量的,但是这个想法未能被接受,因为当时仍欠缺核反应的机制。就在第二次世界大战开始之前的那一年,汉斯·贝特首先证明了氢聚变成氦的核机制,然而,这些早期对恒星能量的研究工作并不能处理比氦重的元素是如何起源的。弗雷德·霍伊尔在第二次世界大战开始之际,刚开始研究重元素的核合成如何在恒星内部进行(见参考资料列表),这项工作认为由于恒星的演化使比氢重的元素得以产生。霍伊尔的研究解释了当星系变老时,元素的丰度是如何随着时间增加。随后发生的是,由霍伊尔所描绘的情景,在1960年代对威廉·福勒、艾利丝泰尔·卡麦伦(AlistairG.W.Cameron)和唐纳德·卡莱顿(DonaldD.Clayton),以及其他的许多研究者产生了创造性的贡献。回顾在1957年...
· 原初核合成
原初核合成的特性原初核合成有两项重要的特征:它仅持续了大约17分钟(从空间扩张开始的第3分钟至第20分钟),之后,宇宙的温度和密度下跌至核聚变所需要的。原初核合成期间的短促是很重要的,因为它防止了比铍重的原子核生成,同时也允许未燃烧的氘存在。它是普遍的,充斥在整个宇宙。进行计算原初核合成作用的关键参数是光子与重子的比率。这个参数与宇宙早期的温度和密度相关,能够让我们确定核聚变发生的条件,并由此导出元素的丰度。虽然光子对重子的比率在确定元素的丰度上非常重要,但数值精确与否对整个宇宙图型产生的变化很小。无须变动大爆炸理论本身的主要架构,原初核合成的结果以质量表示的丰度为大约75%的H-1、25%的He-4、0.01%的氘,和总量仅可供辨识的微量锂(只有10),并且没有其他的重元素。宇宙被观测到的元素丰度与理论数值的一致性,被认为是大爆炸理论最有力的证据。在这个领域习惯上是使用质量的百分比,因此...
· Ia超新星
公认的模型Ia超新星是由美国天文学家鲁道夫·闵可夫斯基,和瑞士天文学家弗里茨·兹威基设计的闵可夫斯基-兹威基超新星分类中一个次分类的类别。有几种方式可以形成这种类型的超新星,但它们共用一个共同的基础机制。理论天文学家长期以来一直认为这种超新星的前身是一颗白矮星,并且在2014年当年在星系M82中发现一颗Ia超新星,而获得实证的证据。当一颗缓慢自转的碳-氧白矮星从他的伴星吸积质量,它的质量会超过大约是1.44M☉的钱德拉塞卡极限,之后它的电子简并压力就不能支撑它的质量。在缺乏抗衡力量的支撑下,白矮星会坍缩形成中子星,这通常发生在一颗主要成分为镁、氖和氧的白矮星。这是天文学家当前的Ia超新星爆炸模型,然而从来没有一颗能达到此一极限,而坍缩也永远不会开始发生。取而代之的是,因为质量的增加使得核心的压力和密度增加,导致温度也升高,并且当白矮星的质量大约达到此一极限的99%,一个持续大约1,000年...
· II型超新星
形成在核心塌缩之前,演化中的恒星一层层的结构像颗巨型的洋葱(未依照比例)。图中构成物由外层起始乃氢、氦、碳、氖、氧、硅、铁。质量比太阳大的恒星演化过程远比太阳复杂。在太阳的核心,氢经由融合成为氦,释放出的热能加热太阳的核心和提供压力来支撑太阳的壳层阻止核心的塌缩(参考流体静力平衡)。在核心制造和堆积的氦,因为温度不够高不足以造成进一步的核聚变。最后,当核心的氢枯竭时,融合开始减缓,同时重力造成核心开始收缩。由收缩提高的温度足够造成短期间的氦融合,这在恒星的生命期中通常短于10%。质量低于8倍太阳质量的恒星,由氦融合产生的碳不能做为燃料,恒星将会逐渐冷却成为白矮星。白矮星如果有邻近的伴星,则可能成为Ia超新星。质量更大的恒星,无论如何只要质量足够,就能在氦燃烧阶段结束后创造更高的温度和压力,让核心的碳成为燃料开始进一步的核聚变。当更重的元素在这些大质量恒星的核心形成时,这些元素像洋葱一样一层...
· 合成燃料
煤液化参阅生物燃料丁醇燃料裂化反应甲醇经济合成润滑油裂解

关于我们

关注族谱网 微信公众号,每日及时查看相关推荐,订阅互动等。

APP下载

下载族谱APP 微信公众号,每日及时查看
扫一扫添加客服微信